聚乙二醇修饰的蛋白质:对基于聚丙交酯-乙交酯的微球递送的影响
Poly(ethylene glycol)-modified proteins: implications for poly(lactide-co-glycolide)-based microsphere delivery.
作者信息
Pai Sheetal S, Tilton Robert D, Przybycien Todd M
机构信息
Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, USA.
出版信息
AAPS J. 2009 Mar;11(1):88-98. doi: 10.1208/s12248-009-9081-8. Epub 2009 Feb 6.
The reduced injection frequency and more nearly constant serum concentrations afforded by sustained release devices have been exploited for the chronic delivery of several therapeutic peptides via poly(lactide-co-glycolide) (PLG) microspheres. The clinical success of these formulations has motivated the exploration of similar depot systems for chronic protein delivery; however, this application has not been fully realized in practice. Problems with the delivery of unmodified proteins in PLG depot systems include high initial "burst" release and irreversible adsorption of protein to the biodegradable polymer. Further, protein activity may be lost due to the damaging effects of protein-interface and protein-surface interactions that occur during both microsphere formation and release. Several techniques are discussed in this review that may improve the performance of PLG depot delivery systems for proteins. One promising approach is the covalent attachment of poly(ethylene glycol) (PEG) to the protein prior to encapsulation in the PLG microspheres. The combination of the extended circulation time of PEGylated proteins and the shielding and potential stabilizing effects of the attached PEG may lead to improved release kinetics from PLG microsphere system and more complete release of the active conjugate.
缓释装置所提供的注射频率降低以及血清浓度更接近恒定,已被用于通过聚(丙交酯 - 乙交酯)(PLG)微球对多种治疗性肽进行长期递送。这些制剂的临床成功促使人们探索类似的长效制剂系统用于长期蛋白质递送;然而,这种应用在实践中尚未完全实现。在PLG长效制剂系统中递送未修饰蛋白质存在的问题包括高初始“突释”以及蛋白质与可生物降解聚合物的不可逆吸附。此外,在微球形成和释放过程中发生的蛋白质 - 界面和蛋白质 - 表面相互作用的破坏作用可能导致蛋白质活性丧失。本文综述了几种可能改善PLG长效蛋白质递送系统性能的技术。一种有前景的方法是在将蛋白质封装到PLG微球之前将聚乙二醇(PEG)共价连接到蛋白质上。聚乙二醇化蛋白质延长的循环时间以及连接的PEG的屏蔽和潜在稳定作用相结合,可能导致从PLG微球系统改善释放动力学以及活性缀合物更完全的释放。