Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival.

作者信息

Niizuma Kuniyasu, Endo Hidenori, Chan Pak H

机构信息

Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305-5487, USA.

出版信息

J Neurochem. 2009 May;109 Suppl 1(Suppl 1):133-8. doi: 10.1111/j.1471-4159.2009.05897.x.

Abstract

Mitochondria are the powerhouse of the cell. Their primary physiological function is to generate adenosine triphosphate through oxidative phosphorylation via the electron transport chain. Reactive oxygen species generated from mitochondria have been implicated in acute brain injuries such as stroke and neurodegeneration. Recent studies have shown that mitochondrially-formed oxidants are mediators of molecular signaling, which is implicated in the mitochondria-dependent apoptotic pathway that involves pro- and antiapoptotic protein binding, the release of cytochrome c, and transcription-independent p53 signaling, leading to neuronal death. Oxidative stress and the redox state of ischemic neurons are also implicated in the signaling pathway that involves phosphatidylinositol 3-kinase/Akt and downstream signaling, which lead to neuronal survival. Genetically modified mice or rats that over-express or are deficient in superoxide dismutase have provided strong evidence in support of the role of mitochondrial dysfunction and oxidative stress as determinants of neuronal death/survival after stroke and neurodegeneration.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索