Lee Mi Nam, Ha Sang Hoon, Kim Jaeyoon, Koh Ara, Lee Chang Sup, Kim Jung Hwan, Jeon Hyeona, Kim Do-Hyung, Suh Pann-Ghill, Ryu Sung Ho
Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbook 790-784, South Korea.
Mol Cell Biol. 2009 Jul;29(14):3991-4001. doi: 10.1128/MCB.00165-09. Epub 2009 May 18.
The mammalian target of rapamycin (mTOR) interacts with raptor to form the protein complex mTORC1 (mTOR complex 1), which plays a central role in the regulation of cell growth in response to environmental cues. Given that glucose is a primary fuel source and a biosynthetic precursor, how mTORC1 signaling is coordinated with glucose metabolism has been an important question. Here, we found that the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) binds Rheb and inhibits mTORC1 signaling. Under low-glucose conditions, GAPDH prevents Rheb from binding to mTOR and thereby inhibits mTORC1 signaling. High glycolytic flux suppresses the interaction between GAPDH and Rheb and thus allows Rheb to activate mTORC1. Silencing of GAPDH or blocking of the Rheb-GAPDH interaction desensitizes mTORC1 signaling to changes in the level of glucose. The GAPDH-dependent regulation of mTORC1 in response to glucose availability occurred even in TSC1-deficient cells and AMPK-silenced cells, supporting the idea that the GAPDH-Rheb pathway functions independently of the AMPK axis. Furthermore, we show that glyceraldehyde-3-phosphate, a glycolytic intermediate that binds GAPDH, destabilizes the Rheb-GAPDH interaction even under low-glucose conditions, explaining how high-glucose flux suppresses the interaction and activates mTORC1 signaling. Taken together, our results suggest that the glycolytic flux regulates mTOR's access to Rheb by regulating the Rheb-GAPDH interaction, thereby allowing mTORC1 to coordinate cell growth with glucose availability.
雷帕霉素的哺乳动物靶点(mTOR)与 Raptor 相互作用形成蛋白质复合物 mTORC1(mTOR 复合物 1),该复合物在响应环境信号调节细胞生长中起核心作用。鉴于葡萄糖是主要的能量来源和生物合成前体,mTORC1 信号如何与葡萄糖代谢协调一直是一个重要问题。在此,我们发现糖酵解酶甘油醛 - 3 - 磷酸脱氢酶(GAPDH)与 Rheb 结合并抑制 mTORC1 信号。在低葡萄糖条件下,GAPDH 阻止 Rheb 与 mTOR 结合,从而抑制 mTORC1 信号。高糖酵解通量抑制 GAPDH 与 Rheb 之间的相互作用,从而使 Rheb 激活 mTORC1。敲低 GAPDH 或阻断 Rheb - GAPDH 相互作用会使 mTORC1 信号对葡萄糖水平变化不敏感。即使在 TSC1 缺陷细胞和 AMPK 敲低的细胞中,GAPDH 对 mTORC1 的依赖性调节也会响应葡萄糖可用性而发生,这支持了 GAPDH - Rheb 途径独立于 AMPK 轴发挥作用的观点。此外,我们表明,甘油醛 - 3 - 磷酸,一种与 GAPDH 结合的糖酵解中间产物,即使在低葡萄糖条件下也会破坏 Rheb - GAPDH 相互作用的稳定性,这解释了高糖酵解通量如何抑制这种相互作用并激活 mTORC1 信号。综上所述,我们的结果表明,糖酵解通量通过调节 Rheb - GAPDH 相互作用来调节 mTOR 与 Rheb 的结合,从而使 mTORC1 能够将细胞生长与葡萄糖可用性协调起来。