使用支持向量机(SVM)预测与单点蛋白质突变相关的功能变化。
Prediction of function changes associated with single-point protein mutations using support vector machines (SVMs).
作者信息
Gao Shan, Zhang Ning, Duan Guang You, Yang Zhuo, Ruan Ji Shou, Zhang Tao
机构信息
Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Science, Nankai University, Tianjin 300071, P.R. China.
出版信息
Hum Mutat. 2009 Aug;30(8):1161-6. doi: 10.1002/humu.21039.
Computational methods can be used to predict the effects of single amino acid substitutions (single-point mutations). In contrast to previous methods that need many protein sequence and structural features, we applied support vector machines (SVMs) to predict protein function changes associated with amino acid substitutions using only sequence information, and cross-validated them on a large dataset extracted from the Protein Mutant Database (PMD). By three SVM classifiers, we investigated three local sequence features of proteins (residue composition, hydrophobic interaction, and evolutionary property), and examined their effects on the prediction accuracy. As a main result, a novel SVM named substitution-matrix-based kernel SVM was constructed to make speedy and accurate prediction, and its value was shown in an application case. Furthermore, our findings confirmed results from other studies.
计算方法可用于预测单个氨基酸替换(单点突变)的影响。与以往需要许多蛋白质序列和结构特征的方法不同,我们应用支持向量机(SVM)仅使用序列信息来预测与氨基酸替换相关的蛋白质功能变化,并在从蛋白质突变数据库(PMD)提取的大型数据集上对其进行交叉验证。通过三个支持向量机分类器,我们研究了蛋白质的三种局部序列特征(残基组成、疏水相互作用和进化特性),并检验了它们对预测准确性的影响。作为主要结果,构建了一种名为基于替换矩阵的核支持向量机的新型支持向量机,以进行快速准确的预测,并在一个应用案例中展示了其价值。此外,我们的研究结果证实了其他研究的结果。