过氧化物酶体增殖物激活受体γ辅激活因子1α(PGC-1α)和过氧化物酶体增殖物激活受体γ辅激活因子1β(PGC-1β)调节神经元中的线粒体密度。

PGC-1{alpha} and PGC-1{beta} regulate mitochondrial density in neurons.

作者信息

Wareski Przemyslaw, Vaarmann Annika, Choubey Vinay, Safiulina Dzhamilja, Liiv Joanna, Kuum Malle, Kaasik Allen

机构信息

Department of Pharmacology, University of Tartu, Ravila 19, 51014 Tartu, Estonia.

出版信息

J Biol Chem. 2009 Aug 7;284(32):21379-85. doi: 10.1074/jbc.M109.018911. Epub 2009 Jun 19.

Abstract

Recent studies indicate that regulation of cellular oxidative capacity through enhancing mitochondrial biogenesis may be beneficial for neuronal recovery and survival in human neurodegenerative disorders. The peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) has been shown to be a master regulator of mitochondrial biogenesis and cellular energy metabolism in muscle and liver. The aim of our study was to establish whether PGC-1alpha and PGC-1beta control mitochondrial density also in neurons and if these coactivators could be up-regulated by deacetylation. The results demonstrate that PGC-1alpha and PGC-1beta control mitochondrial capacity in an additive and independent manner. This effect was observed in all studied subtypes of neurons, in cortical, midbrain, and cerebellar granule neurons. We also observed that endogenous neuronal PGC-1alpha but not PGC-1beta could be activated through its repressor domain by suppressing it. Results demonstrate also that overexpression of SIRT1 deacetylase or suppression of GCN5 acetyltransferase activates transcriptional activity of PGC-1alpha in neurons and increases mitochondrial density. These effects were mediated exclusively via PGC-1alpha, since overexpression of SIRT1 or suppression of GCN5 was ineffective where PGC-1alpha was suppressed by short hairpin RNA. Moreover, the results demonstrate that overexpression of PGC-1beta or PGC-1alpha or activation of the latter by SIRT1 protected neurons from mutant alpha-synuclein- or mutant huntingtin-induced mitochondrial loss. These evidences demonstrate that activation or overexpression of the PGC-1 family of coactivators could be used to compensate for neuronal mitochondrial loss and suggest that therapeutic agents activating PGC-1 would be valuable for treating neurodegenerative diseases in which mitochondrial dysfunction and oxidative damage play an important pathogenic role.

摘要

最近的研究表明,通过增强线粒体生物合成来调节细胞氧化能力,可能对人类神经退行性疾病中的神经元恢复和存活有益。过氧化物酶体增殖物激活受体γ共激活因子-1α(PGC-1α)已被证明是肌肉和肝脏中线粒体生物合成和细胞能量代谢的主要调节因子。我们研究的目的是确定PGC-1α和PGC-1β是否也能控制神经元中的线粒体密度,以及这些共激活因子是否能通过去乙酰化上调。结果表明,PGC-1α和PGC-1β以相加和独立的方式控制线粒体容量。在所有研究的神经元亚型中,包括皮质、中脑和小脑颗粒神经元中都观察到了这种效应。我们还观察到,内源性神经元PGC-1α而非PGC-1β可通过抑制其阻遏域而被激活。结果还表明,SIRT1去乙酰化酶的过表达或GCN5乙酰转移酶的抑制可激活神经元中PGC-1α的转录活性并增加线粒体密度。这些效应完全是通过PGC-1α介导的,因为在PGC-1α被短发夹RNA抑制的情况下,SIRT1的过表达或GCN5的抑制是无效的。此外,结果表明,PGC-1β或PGC-1α的过表达或SIRT1对后者的激活可保护神经元免受突变α-突触核蛋白或突变亨廷顿蛋白诱导的线粒体丢失。这些证据表明,共激活因子PGC-1家族的激活或过表达可用于补偿神经元线粒体丢失,并表明激活PGC-1的治疗药物对于治疗线粒体功能障碍和氧化损伤起重要致病作用的神经退行性疾病将是有价值的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索