非贝叶斯概率框架下的最优分类器融合

Optimal classifier fusion in a non-bayesian probabilistic framework.

作者信息

Terrades Oriol Ramos, Valveny Ernest, Tabbone Salvatore

机构信息

Computer Vision Centre and the Department of Computer Science, Universitat Automous of Barcelona, Bellaterra, Spain.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2009 Sep;31(9):1630-44. doi: 10.1109/TPAMI.2008.224.

Abstract

The combination of the output of classifiers has been one of the strategies used to improve classification rates in general purpose classification systems. Some of the most common approaches can be explained using the Bayes' formula. In this paper, we tackle the problem of the combination of classifiers using a non-Bayesian probabilistic framework. This approach permits us to derive two linear combination rules that minimize misclassification rates under some constraints on the distribution of classifiers. In order to show the validity of this approach we have compared it with other popular combination rules from a theoretical viewpoint using a synthetic data set, and experimentally using two standard databases: the MNIST handwritten digit database and the GREC symbol database. Results on the synthetic data set show the validity of the theoretical approach. Indeed, results on real data show that the proposed methods outperform other common combination schemes.

摘要

在通用分类系统中,组合分类器的输出一直是提高分类准确率的策略之一。一些最常见的方法可以用贝叶斯公式来解释。在本文中,我们使用非贝叶斯概率框架来解决分类器组合的问题。这种方法使我们能够推导出两个线性组合规则,在对分类器分布的某些约束下,将错误分类率降至最低。为了证明这种方法的有效性,我们从理论角度使用合成数据集将其与其他流行的组合规则进行了比较,并通过实验使用了两个标准数据库:MNIST手写数字数据库和GREC符号数据库。合成数据集上的结果证明了理论方法的有效性。实际上,真实数据上的结果表明,所提出的方法优于其他常见的组合方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索