Suppr超能文献

应用修正回归技术对帕金森病运动症状进行定量评估。

Application of modified regression techniques to a quantitative assessment for the motor signs of Parkinson's disease.

机构信息

Department of Rehabilitation Science and Technology, University of Pittsburgh, Pittsburgh, PA 15260, USA.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2009 Dec;17(6):568-75. doi: 10.1109/TNSRE.2009.2034461. Epub 2009 Oct 30.

Abstract

Effective clinical trials for neuroprotective interventions for Parkinson's disease (PD) require a way to quantify an individual's motor symptoms and analyze the change in these symptoms over time. Clinical scales provide a global picture of function but cannot precisely measure specific aspects of motor control. We have used commercially available sensors to create a protocol called Advanced Sensing for Assessment of Parkinson's disease (ASAP) to obtain a quantitative and reliable measure of motor impairment in early to moderate PD. The ASAP protocol measures grip force as an individual tracks a sinusoidal or pseudorandom target force under three conditions of increasing cognitive load. Thirty individuals with PD have completed the ASAP protocol. The ASAP data for 26 of these individuals were summarized in terms of 36 variables, and modified regression techniques were used to predict an individual's score on the Unified Parkinson Disease Rating Scale based on ASAP data. We observed a mean prediction error of approximately 3.5 UPDRS points, and the predicted score accounted for approximately 76% of the variability of the UPDRS. These results demonstrate that the ASAP protocol can measure differences for individuals who are clinically different. This indicates that the ASAP protocol may be able to measure changes with time in the motor signs of an individual with PD.

摘要

有效的神经保护干预帕金森病(PD)的临床试验需要一种方法来量化个体的运动症状,并分析这些症状随时间的变化。临床量表提供了功能的全貌,但不能精确测量运动控制的特定方面。我们已经使用市售传感器创建了一个名为“帕金森病评估的高级感应(ASAP)”的协议,以获得早期至中度 PD 中运动障碍的定量和可靠测量。ASAP 协议通过三种认知负荷增加的情况下测量个体跟踪正弦或伪随机目标力时的握力。30 名 PD 患者已完成 ASAP 协议。这些患者中的 26 人的 ASAP 数据汇总了 36 个变量,并使用修改后的回归技术来预测个体基于 ASAP 数据的统一帕金森病评定量表(UPDRS)评分。我们观察到平均预测误差约为 3.5 个 UPDRS 点,预测得分约占 UPDRS 变异性的 76%。这些结果表明,ASAP 协议可以测量临床差异个体的差异。这表明 ASAP 协议可能能够测量 PD 个体运动迹象随时间的变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验