使用描述词对呼吸困难进行量化:呼吸困难-12 的制定和初步测试。

Quantification of dyspnoea using descriptors: development and initial testing of the Dyspnoea-12.

机构信息

School of Nursing, Faculty of Health and Social Care, University of Salford, Greater Manchester, UK.

出版信息

Thorax. 2010 Jan;65(1):21-6. doi: 10.1136/thx.2009.118521. Epub 2009 Dec 8.

Abstract

RATIONALE

Dyspnoea is a debilitating and distressing symptom that is reflected in different verbal descriptors. Evidence suggests that dyspnoea, like pain perception, consists of sensory quality and affective components. The objective of this study was to develop an instrument that measures overall dyspnoea severity using descriptors that reflect its different aspects.

METHODS

81 dyspnoea descriptors were administered to 123 patients with chronic obstructive pulmonary disease (COPD), 129 with interstitial lung disease and 106 with chronic heart failure. These were reduced to 34 items using hierarchical methods. Rasch analysis informed decisions regarding further item removal and fit to the unidimensional model. Principal component analysis (PCA) explored the underlying structure of the final item set. Validity and reliability of the new instrument were further assessed in a separate group of 53 patients with COPD.

RESULTS

After removal of items with hierarchical methods (n = 47) and items that failed to fit the Rasch model (n = 22), 12 were retained. The "Dyspnoea-12" had good internal reliability (Cronbach's alpha = 0.9) and fit to the Rasch model (chi(2) p = 0.08). Items patterned into two groups called "physical"(n = 7) and "affective"(n = 5). In the separate validation study, Dyspnoea-12 correlated with the Hospital Anxiety and Depression Scale (anxiety r = 0.51; depression r = 0.44, p<0.001, respectively), 6-minute walk distance (r = -0.38, p<0.01) and MRC (Medical Research Council) grade (r = 0.48, p<0.01), and had good stability over time (intraclass correlation coefficient = 0.9, p<0.001).

CONCLUSION

Dyspnoea-12 fulfills modern psychometric requirements for measurement. It provides a global score of breathlessness severity that incorporates both "physical" and "affective" aspects, and can measure dyspnoea in a variety of diseases.

摘要

背景

呼吸困难是一种使人虚弱和痛苦的症状,它反映在不同的言语描述上。有证据表明,呼吸困难与疼痛感知一样,由感觉质量和情感成分组成。本研究的目的是开发一种使用反映其不同方面的描述符来测量整体呼吸困难严重程度的工具。

方法

向 123 名慢性阻塞性肺疾病(COPD)患者、129 名间质性肺疾病患者和 106 名慢性心力衰竭患者提供 81 种呼吸困难描述符。使用层次方法将其减少到 34 项。Rasch 分析为进一步删除项目和适应单维模型提供了决策依据。主成分分析(PCA)探索了最终项目集的潜在结构。在另一组 53 名 COPD 患者中进一步评估新工具的有效性和可靠性。

结果

使用层次方法(n = 47)和不符合 Rasch 模型的项目(n = 22)删除项目后,保留了 12 项。“呼吸困难-12”具有良好的内部可靠性(Cronbach's alpha = 0.9)和适应 Rasch 模型的能力(chi(2) p = 0.08)。项目分为两组,称为“身体”(n = 7)和“情感”(n = 5)。在单独的验证研究中,呼吸困难-12 与医院焦虑和抑郁量表(焦虑 r = 0.51;抑郁 r = 0.44,p<0.001)、6 分钟步行距离(r = -0.38,p<0.01)和 MRC(医疗研究委员会)分级(r = 0.48,p<0.01)相关,并且具有良好的时间稳定性(组内相关系数= 0.9,p<0.001)。

结论

呼吸困难-12 满足了现代心理测量学测量的要求。它提供了一种反映“身体”和“情感”方面的呼吸困难严重程度的总体评分,并可用于多种疾病的呼吸困难测量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea5b/2795166/b27b8aa79d5d/THX-65-01-0021-f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索