Département de Chimie, Faculté des Sciences Semlalia, BP 2390, Université Cadi Ayyad, Marrakech, Morocco.
Eur J Med Chem. 2010 Apr;45(4):1590-7. doi: 10.1016/j.ejmech.2010.01.002. Epub 2010 Jan 14.
The tetrahydroimidazo[4,5,1-jk][1,4]benzodiazepinone (TIBO) derivatives, as non-nucleoside reverse transcriptase inhibitors, acquire a significant place in the treatment of the infections by the HIV. In the present paper, the support vector machines (SVM) are used to develop quantitative relationships between the anti-HIV activity and four molecular descriptors of 82 TIBO derivatives. The results obtained by SVM give good statistical results compared to those given by multiple linear regressions and artificial neural networks. The contribution of each descriptor to structure-activity relationships was evaluated. It indicates the importance of the hydrophobic parameter. The proposed method can be successfully used to predict the anti-HIV of TIBO derivatives with only four molecular descriptors which can be calculated directly from molecular structure alone.
四氢咪唑并[4,5,1-jk][1,4]苯并二氮杂卓酮(TIBO)衍生物作为非核苷类逆转录酶抑制剂,在治疗 HIV 感染方面占有重要地位。本文采用支持向量机(SVM)建立了 82 个 TIBO 衍生物的抗 HIV 活性与四个分子描述符之间的定量关系。与多元线性回归和人工神经网络相比,SVM 得到的结果具有良好的统计学结果。评估了每个描述符对结构-活性关系的贡献。结果表明疏水参数的重要性。该方法可以成功地用于预测 TIBO 衍生物的抗 HIV 活性,仅用四个可以直接从分子结构计算得到的分子描述符。