文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用最大熵经验先验提高分类器错误率的贝叶斯可信度区间。

Improving Bayesian credibility intervals for classifier error rates using maximum entropy empirical priors.

机构信息

Uppsala University, Department of Medical Sciences, Academic Hospital, 751 85 Uppsala, Sweden.

出版信息

Artif Intell Med. 2010 Jun;49(2):93-104. doi: 10.1016/j.artmed.2010.02.004. Epub 2010 Mar 27.


DOI:10.1016/j.artmed.2010.02.004
PMID:20347582
Abstract

OBJECTIVE: Successful use of classifiers that learn to make decisions from a set of patient examples require robust methods for performance estimation. Recently many promising approaches for determination of an upper bound for the error rate of a single classifier have been reported but the Bayesian credibility interval (CI) obtained from a conventional holdout test still delivers one of the tightest bounds. The conventional Bayesian CI becomes unacceptably large in real world applications where the test set sizes are less than a few hundred. The source of this problem is that fact that the CI is determined exclusively by the result on the test examples. In other words, there is no information at all provided by the uniform prior density distribution employed which reflects complete lack of prior knowledge about the unknown error rate. Therefore, the aim of the study reported here was to study a maximum entropy (ME) based approach to improved prior knowledge and Bayesian CIs, demonstrating its relevance for biomedical research and clinical practice. METHOD AND MATERIAL: It is demonstrated how a refined non-uniform prior density distribution can be obtained by means of the ME principle using empirical results from a few designs and tests using non-overlapping sets of examples. RESULTS: Experimental results show that ME based priors improve the CIs when employed to four quite different simulated and two real world data sets. CONCLUSIONS: An empirically derived ME prior seems promising for improving the Bayesian CI for the unknown error rate of a designed classifier.

摘要

目的:成功使用从一组患者示例中学习做出决策的分类器需要稳健的性能估计方法。最近,已经有许多很有前途的方法被报道,用于确定单个分类器的错误率上限,但从传统的留一法测试获得的贝叶斯置信区间(CI)仍然提供了最紧的界限之一。在测试集大小小于几百个的实际应用中,传统的贝叶斯 CI 会变得过大。造成这个问题的原因是,CI 完全由测试示例的结果确定。换句话说,使用的均匀先验密度分布完全没有提供任何信息,这反映了对未知错误率的完全缺乏先验知识。因此,本研究报告的目的是研究基于最大熵(ME)的方法来改进先验知识和贝叶斯 CI,并证明其在生物医学研究和临床实践中的相关性。

方法和材料:演示了如何通过使用几个设计和使用不重叠示例集的测试的经验结果,通过 ME 原理获得更精细的非均匀先验密度分布。

结果:实验结果表明,当应用于四个非常不同的模拟数据集和两个真实世界数据集时,基于 ME 的先验可以改善 CI。

结论:从经验中得出的 ME 先验似乎有希望提高设计分类器的未知错误率的贝叶斯 CI。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索