La0.7Ba0.15Sr0.15MnO3中的巨室温磁阻抗及一种灵敏位置探测器的研制

Giant room temperature magnetoimpedance in La0.7Ba0.15Sr0.15MnO3 and development of a sensitive position detector.

作者信息

Das Soma, Dey T K

机构信息

Department of Physics, University of Aveiro, Aveiro 3810-193, Portugal.

出版信息

J Nanosci Nanotechnol. 2010 Apr;10(4):2944-8. doi: 10.1166/jnn.2010.1445.

Abstract

Observation of room temperature giant magnetoimpedance in La0.7Ba0.15Sr0.15MnO3 compound having nanometric grain size is reported under low magnetic field and over the frequency range between 50 KHz and 15 MHz. Both the resistive and reactive components of impedance increase with increasing frequency due to skin effect of the metallic state below T(C). Above a critical frequency (1 MHz), a sharp increase in both R and X and hence Z is observed. The applied magnetic field influences the impedance by affecting the penetration depth via the transverse permeability and gives rise to large magnetoimpedance (approximately 70%) at low fields up to 0.1 T. Magnetoimpedance of La0.7Ba0.15Sr0.15MnO3 compound display major change (approximatley 61%) between 0.02 and 0.035 T and appears to originate due to the spin alignment of the charge carriers across the grain boundaries. At fields > 0.1 T, magnetoimpedance displays near saturation, corresponding to the completion of the spin alignment across the grain boundaries. An unique scaling behavior has been observed for field dependence of magnetoimpedance at various frequencies, which could be well accounted by a phenomenological model. Feasibility of the development of a sensitive linear position sensor is also demonstrated.

摘要

报道了在低磁场以及50千赫兹至15兆赫兹频率范围内,对具有纳米晶粒尺寸的La0.7Ba0.15Sr0.15MnO3化合物室温巨磁阻抗的观测。由于低于居里温度(Tc)时金属态的趋肤效应,阻抗的电阻和电抗分量均随频率增加而增大。在高于临界频率(1兆赫兹)时,可观测到电阻(R)和电抗(X)以及阻抗(Z)急剧增加。外加磁场通过横向磁导率影响穿透深度,进而影响阻抗,并在高达0.1特斯拉的低磁场下产生大的磁阻抗(约70%)。La0.7Ba0.15Sr0.15MnO3化合物的磁阻抗在0.02至0.035特斯拉之间显示出主要变化(约61%),这似乎源于电荷载流子在晶界处的自旋排列。在磁场大于0.1特斯拉时,磁阻抗显示出接近饱和的状态,这对应于晶界处自旋排列的完成。在不同频率下,观测到了磁阻抗对磁场依赖性的独特标度行为,这可以用一个唯象模型很好地解释。还证明了开发灵敏线性位置传感器的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索