胰岛素样生长因子信号传导在诱导多能干细胞形成中的潜在作用。
A potential role for insulin-like growth factor signaling in induction of pluripotent stem cell formation.
作者信息
Li Yangxin, Geng Yong-Jian
机构信息
Texas Heart Institute, Houston, TX 77030, USA.
出版信息
Growth Horm IGF Res. 2010 Dec;20(6):391-8. doi: 10.1016/j.ghir.2010.09.005. Epub 2010 Oct 16.
Recent success in reprogramming somatic cells into induced pluripotent stem cells (iPS cells) with a cluster of nuclear transcription factors, such as Oct4, Sox2, Klf4, and c-myc, opens up a new era in regenerative medicine. However, reportedly poor efficiency and slow kinetics of the reprogramming process by viral transfection of the nuclear factors may create an obstacle that hampers clinical application of the iPS cell technology. Furthermore, the viral transfection may induce mutagenesis and raises the risk for cancer development. Hence, generation of iPS cells using a non-viral approach appears to be an important prerequisite for iPS cell-based regenerative medicine. Through its receptor/phosphoinositide 3-kinase (PI3-K) signaling pathway, insulin-like growth factor (IGF) plays a critical role in promotion of survival and proliferation in a diversity of cell types, including both embryonic and adult stem cells. In addition, IGF may enhance expression of reprogramming or surviving factors in reprogramming somatic cells. This review summarizes recent advances in IGF research and discusses the potential for IGF to act as a co-stimulatory factor for somatic cell reprogramming and iPS cell development. Currently available evidence from experimental animal and human studies highly suggests that IGF may contribute to reprogramming of somatic cells into iPS cell generation, and enhancement of iPS cell survival and growth, which will be instrumental in regenerative medicine.
近期,利用一组核转录因子(如Oct4、Sox2、Klf4和c-myc)将体细胞重编程为诱导多能干细胞(iPS细胞)取得了成功,这开启了再生医学的新纪元。然而,据报道,通过病毒转染核因子进行重编程过程的效率低下且动力学缓慢,这可能会成为阻碍iPS细胞技术临床应用的障碍。此外,病毒转染可能会诱发突变并增加癌症发生的风险。因此,使用非病毒方法生成iPS细胞似乎是基于iPS细胞的再生医学的重要前提。胰岛素样生长因子(IGF)通过其受体/磷酸肌醇3激酶(PI3-K)信号通路,在促进包括胚胎干细胞和成体干细胞在内的多种细胞类型的存活和增殖中发挥关键作用。此外,IGF可能会增强重编程体细胞中重编程或存活因子的表达。本综述总结了IGF研究的最新进展,并讨论了IGF作为体细胞重编程和iPS细胞发育的共刺激因子的潜力。目前来自实验动物和人体研究的现有证据强烈表明,IGF可能有助于将体细胞重编程为iPS细胞,并提高iPS细胞的存活和生长能力,这将对再生医学起到重要作用。