突触后峰电位的内稳态诱导通过逆行信号传递的细胞自主调节抑制性输入。
Postsynaptic spiking homeostatically induces cell-autonomous regulation of inhibitory inputs via retrograde signaling.
机构信息
Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
出版信息
J Neurosci. 2010 Dec 1;30(48):16220-31. doi: 10.1523/JNEUROSCI.3085-10.2010.
Developing neural circuits face the dual challenge of growing in an activity-induced fashion and maintaining stability through homeostatic mechanisms. Compared to our understanding of homeostatic regulation of excitatory synapses, relatively little is known about the mechanism mediating homeostatic plasticity of inhibitory synapses, especially that following activity elevation. Here, we found that elevating neuronal activity in cultured hippocampal neurons for 4 h significantly increased the frequency and amplitude of mIPSCs, before detectable change at excitatory synapses. Consistently, we observed increases in presynaptic and postsynaptic proteins of GABAergic synapses, including GAD65, vGAT, and GABA(A)Rα1. By suppressing activity-induced increase of neuronal firing with expression of the inward rectifier potassium channel Kir2.1 in individual neurons, we showed that elevation in postsynaptic spiking activity is required for activity-dependent increase in the frequency and amplitude of mIPSCs. Importantly, directly elevating spiking in individual postsynaptic neurons, by capsaicin activation of overexpressed TRPV1 channels, was sufficient to induce increased mIPSC amplitude and frequency, mimicking the effect of elevated neuronal activity. Downregulating BDNF expression in the postsynaptic neuron or its extracellular scavenging prevented activity-induced increase in mIPSC frequency, consistent with a role of BDNF-dependent retrograde signaling in this process. Finally, elevating activity in vivo by kainate injection increased both mIPSC amplitude and frequency in CA1 pyramidal neurons. Thus, spiking-induced, cell-autonomous upregulation of GABAergic synaptic inputs, through retrograde BDNF signaling, represents an early adaptive response of neural circuits to elevated network activity.
发育中的神经回路面临着双重挑战,既要以活动诱导的方式生长,又要通过稳态机制保持稳定性。与我们对兴奋性突触的稳态调节的理解相比,对于介导抑制性突触的稳态可塑性的机制,我们知之甚少,尤其是在活动增加之后。在这里,我们发现,在培养的海马神经元中,将神经元活动升高 4 小时会显著增加 mIPSCs 的频率和幅度,而在兴奋性突触之前不会检测到明显的变化。一致地,我们观察到 GABA 能突触的突触前和突触后蛋白增加,包括 GAD65、vGAT 和 GABA(A)Rα1。通过在单个神经元中表达内向整流钾通道 Kir2.1 来抑制活动诱导的神经元放电增加,我们表明,突触后放电活动的增加是依赖于活动的 mIPSCs 频率和幅度增加所必需的。重要的是,通过过表达 TRPV1 通道的辣椒素激活单个突触后神经元中的放电,足以诱导 mIPSC 幅度和频率的增加,模拟升高神经元活动的效果。下调突触后神经元中的 BDNF 表达或其细胞外清除可以防止活动诱导的 mIPSC 频率增加,这与 BDNF 依赖的逆行信号在该过程中的作用一致。最后,通过海人藻酸注射在体内升高活动,增加 CA1 锥体神经元中的 mIPSC 幅度和频率。因此,通过逆行 BDNF 信号传递,由放电诱导的、细胞自主的 GABA 能突触输入的上调,代表了神经回路对升高的网络活动的早期适应性反应。