光滑熵的不确定关系。

Uncertainty relation for smooth entropies.

机构信息

Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland.

出版信息

Phys Rev Lett. 2011 Mar 18;106(11):110506. doi: 10.1103/PhysRevLett.106.110506. Epub 2011 Mar 16.

Abstract

Uncertainty relations give upper bounds on the accuracy by which the outcomes of two incompatible measurements can be predicted. While established uncertainty relations apply to cases where the predictions are based on purely classical data (e.g., a description of the system's state before measurement), an extended relation which remains valid in the presence of quantum information has been proposed recently [Berta et al., Nature Phys. 6, 659 (2010)]. Here, we generalize this uncertainty relation to one formulated in terms of smooth entropies. Since these entropies measure operational quantities such as extractable secret key length, our uncertainty relation is of immediate practical use. To illustrate this, we show that it directly implies security of quantum key distribution protocols. Our security claim remains valid even if the implemented measurement devices deviate arbitrarily from the theoretical model.

摘要

不确定性关系为两个不兼容测量结果的预测精度提供了上限。虽然已建立的不确定性关系适用于基于纯经典数据(例如,测量前系统状态的描述)的预测情况,但最近已提出了一种在存在量子信息时仍然有效的扩展关系[Berta 等人,自然物理学 6,659(2010)]。在这里,我们将此不确定性关系推广到基于平滑熵的关系。由于这些熵测量的是可提取的秘密密钥长度等操作量,因此我们的不确定性关系具有直接的实际用途。为了说明这一点,我们表明它直接意味着量子密钥分发协议的安全性。即使所实现的测量设备与理论模型任意偏离,我们的安全主张仍然有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索