Suppr超能文献

CAERUS:利用蛋白质结构信息、蛋白质网络、基因表达数据和突变数据之间的关系预测癌症预后。

CAERUS: predicting CAncER oUtcomeS using relationship between protein structural information, protein networks, gene expression data, and mutation data.

机构信息

Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada.

出版信息

PLoS Comput Biol. 2011 Mar;7(3):e1001114. doi: 10.1371/journal.pcbi.1001114. Epub 2011 Mar 31.

Abstract

Carcinogenesis is a complex process with multiple genetic and environmental factors contributing to the development of one or more tumors. Understanding the underlying mechanism of this process and identifying related markers to assess the outcome of this process would lead to more directed treatment and thus significantly reduce the mortality rate of cancers. Recently, molecular diagnostics and prognostics based on the identification of patterns within gene expression profiles in the context of protein interaction networks were reported. However, the predictive performances of these approaches were limited. In this study we propose a novel integrated approach, named CAERUS, for the identification of gene signatures to predict cancer outcomes based on the domain interaction network in human proteome. We first developed a model to score each protein by quantifying the domain connections to its interacting partners and the somatic mutations present in the domain. We then defined proteins as gene signatures if their scores were above a preset threshold. Next, for each gene signature, we quantified the correlation of the expression levels between this gene signature and its neighboring proteins. The results of the quantification in each patient were then used to predict cancer outcome by a modified naïve Bayes classifier. In this study we achieved a favorable accuracy of 88.3%, sensitivity of 87.2%, and specificity of 88.9% on a set of well-documented gene expression profiles of 253 consecutive breast cancer patients with different outcomes. We also compiled a list of cancer-associated gene signatures and domains, which provided testable hypotheses for further experimental investigation. Our approach proved successful on different independent breast cancer data sets as well as an ovarian cancer data set. This study constitutes the first predictive method to classify cancer outcomes based on the relationship between the domain organization and protein network.

摘要

致癌作用是一个复杂的过程,涉及多个遗传和环境因素,导致一个或多个肿瘤的发展。了解这个过程的潜在机制,并确定相关的标志物来评估这个过程的结果,将导致更有针对性的治疗,从而显著降低癌症的死亡率。最近,基于基因表达谱中蛋白质相互作用网络内模式的识别,报道了分子诊断和预后。然而,这些方法的预测性能有限。在这项研究中,我们提出了一种新的综合方法,命名为 CAERUS,用于识别基因特征,以基于人类蛋白质组中域相互作用网络来预测癌症结果。我们首先开发了一种通过量化与相互作用伙伴的域连接和域中存在的体细胞突变来给每个蛋白质评分的模型。如果蛋白质的分数超过预设的阈值,我们就将其定义为基因特征。接下来,对于每个基因特征,我们量化了该基因特征与其相邻蛋白质之间的表达水平之间的相关性。然后,在每个患者中,使用修改后的朴素贝叶斯分类器,根据量化结果来预测癌症结果。在这项研究中,我们在一组 253 名连续乳腺癌患者的有充分记录的基因表达谱上实现了 88.3%的良好准确性、87.2%的敏感性和 88.9%的特异性。我们还编制了一份癌症相关基因特征和域的列表,为进一步的实验研究提供了可检验的假设。我们的方法在不同的独立乳腺癌数据集和卵巢癌数据集中也取得了成功。这项研究构成了第一个基于域组织和蛋白质网络之间的关系来分类癌症结果的预测方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a467/3068924/1e9e30442bfc/pcbi.1001114.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验