理性、模块化的酶免 DNA 回路适配多种检测方法。

Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods.

机构信息

Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA.

出版信息

Nucleic Acids Res. 2011 Sep 1;39(16):e110. doi: 10.1093/nar/gkr504. Epub 2011 Jun 21.

Abstract

Signal amplification is a key component of molecular detection. Enzyme-free signal amplification is especially appealing for the development of low-cost, point-of-care diagnostics. It has been previously shown that enzyme-free DNA circuits with signal-amplification capacity can be designed using a mechanism called 'catalyzed hairpin assembly'. However, it is unclear whether the efficiency and modularity of such circuits is suitable for multiple analytical applications. We have therefore designed and characterized a simplified DNA circuit based on catalyzed hairpin assembly, and applied it to multiple different analytical formats, including fluorescent, colorimetric, and electrochemical and signaling. By optimizing the design of previous hairpin-based catalytic assemblies we found that our circuit has almost zero background and a high catalytic efficiency, with a k(cat) value above 1 min(-1). The inherent modularity of the circuit allowed us to readily adapt our circuit to detect both RNA and small molecule analytes. Overall, these data demonstrate that catalyzed hairpin assembly is suitable for analyte detection and signal amplification in a 'plug-and-play' fashion.

摘要

信号放大是分子检测的关键组成部分。无酶信号放大特别适合开发低成本、即时诊断的医疗设备。先前已经表明,可以使用一种称为“催化发夹组装”的机制来设计具有信号放大能力的无酶 DNA 电路。然而,尚不清楚此类电路的效率和模块性是否适合多种分析应用。因此,我们设计并表征了一种基于催化发夹组装的简化 DNA 电路,并将其应用于多种不同的分析形式,包括荧光、比色法、电化学和信号转导。通过优化以前基于发夹的催化组装的设计,我们发现我们的电路几乎没有背景且具有高效的催化效率,k(cat) 值高于 1 min(-1)。该电路的固有模块性使我们能够轻松地将我们的电路适配于检测 RNA 和小分子分析物。总的来说,这些数据表明,催化发夹组装适合以“即插即用”的方式进行分析物检测和信号放大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e46/3167626/f870d366d865/gkr504f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索