用于预测无透析中样本的平衡透析剂量的人工神经网络

Artificial neural network for prediction of equilibrated dialysis dose without intradialytic sample.

作者信息

Azar Ahmad Taher, Wahba Khaled M

机构信息

Electrical Communication & Electronics Systems Engineering department, Modern Science and Arts University (MSA), 6th of October City, Egypt.

出版信息

Saudi J Kidney Dis Transpl. 2011 Jul;22(4):705-11.

DOI:
Abstract

Post-dialysis urea rebound (PDUR) is a cause of Kt/V overestimation when it is calculated from pre-dialysis and the immediate post-dialysis blood urea collections. Measuring PDUR requires a 30-or 60-min post-dialysis sampling, which is inconvenient. In this study, a supervised neural network was proposed to predict the equilibrated urea (C eq) at 60 min after the end of hemodialysis (HD). Data of 150 patients from a dialysis unit were analyzed. C eq was measured 60 min after each HD session to calculate PDUR, equilibrated urea reduction rate eq (URR), and ( eq Kt/V). The mean percentage of true urea rebound measured after 60 min of HD session was 19.6 ± 10.7. The mean urea rebound observed from the artificial neural network (ANN) was 18.6 ± 13.9%, while the means were 24.8 ± 14.1% and 21.3 ± 3.49% using Smye and Daugirdas methods, respectively. The ANN model achieved a correlation coefficient of 0.97 (P <0.0001), while the Smye and Daugirdas methods yielded R = 0.81 and 0.93, respectively (P <0.0001); the errors of the Smye method were larger than those of the other methods and resulted in a considerable bias in all cases, while the predictive accuracy for ( eq Kt/V) 60 was equally good by the Daugirdas' formula and the ANN . We conclude that the use of the ANN urea estimation yields accurate results when used to calculate ( eq Kt/V).

摘要

透析后尿素反弹(PDUR)是根据透析前和透析后即刻采集的血尿素计算Kt/V时导致其高估的一个原因。测量PDUR需要在透析后30或60分钟进行采样,这很不方便。在本研究中,提出了一种监督神经网络来预测血液透析(HD)结束后60分钟时的平衡尿素(Ceq)。分析了来自一个透析单元的150例患者的数据。在每次HD治疗后60分钟测量Ceq,以计算PDUR、平衡尿素清除率eq(URR)和(eq Kt/V)。HD治疗60分钟后测得的真实尿素反弹的平均百分比为19.6±10.7。人工神经网络(ANN)观察到的平均尿素反弹为18.6±13.9%,而使用Smye法和Daugirdas法时的平均值分别为24.8±14.1%和21.3±3.49%。ANN模型的相关系数为0.97(P<0.0001),而Smye法和Daugirdas法的R值分别为0.81和0.93(P<0.0001);Smye法的误差大于其他方法,并且在所有情况下都导致了相当大的偏差,而Daugirdas公式和ANN对(eq Kt/V)60的预测准确性同样良好。我们得出结论,当用于计算(eq Kt/V)时,使用ANN估算尿素可产生准确的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索