沙门氏菌中 RNase E 的温度敏感突变体。

Temperature-sensitive mutants of RNase E in Salmonella enterica.

机构信息

Dept. of Cell and Molecular Biology, Box 596, Uppsala University, Uppsala S-751 23, Sweden.

出版信息

J Bacteriol. 2011 Dec;193(23):6639-50. doi: 10.1128/JB.05868-11. Epub 2011 Sep 23.

Abstract

RNase E has an important role in mRNA turnover and stable RNA processing, although the reason for its essentiality is unknown. We isolated conditional mutants of RNase E to provide genetic tools to probe its essential function. In Salmonella enterica serovar Typhimurium, an extreme slow-growth phenotype caused by mutant EF-Tu (Gln125Arg, tufA499) can be rescued by mutants of RNase E that have reduced activity. We exploited this phenotype to select mutations in RNase E and screened these for temperature sensitivity (TS) for growth. Four different TS mutations were identified, all in the N-terminal domain of RNase E: Gly66→Cys, Ile207→Ser, Ile207→Asn, and Ala327→Pro. We also selected second-site mutations in RNase E that reversed temperature sensitivity. The complete set of RNase E mutations (53 primary mutations including the TS mutations, and 23 double mutations) were analyzed for their possible effects on the structure and function of RNase E by using the available three-dimensional (3-D) structures. Most single mutations were predicted to destabilize the structure, while second-site mutations that reversed the TS phenotype were predicted to restore stability to the structure. Three isogenic strain pairs carrying single or double mutations in RNase E (TS, and TS plus second-site mutation) were tested for their effects on the degradation, accumulation, and processing of mRNA, rRNA, and tRNA. The greatest defect was observed on rne mRNA autoregulation, and this correlated with the ability to rescue the tufA499-associated slow-growth phenotype. This is consistent with the RNase E mutants being defective in initial binding or subsequent cleavage of an mRNA critical for fast growth.

摘要

RNase E 在 mRNA 周转和稳定 RNA 加工中具有重要作用,尽管其必需性的原因尚不清楚。我们分离了 RNase E 的条件突变体,为研究其必需功能提供了遗传工具。在鼠伤寒沙门氏菌中,突变 EF-Tu (Gln125Arg, tufA499) 引起的极端生长缓慢表型可以被 RNase E 活性降低的突变体拯救。我们利用这种表型来选择 RNase E 中的突变,并对这些突变进行温度敏感性(TS)生长筛选。鉴定出了四个不同的 TS 突变,均位于 RNase E 的 N 端结构域:Gly66→Cys、Ile207→Ser、Ile207→Asn 和 Ala327→Pro。我们还选择了 RNase E 中的第二个突变点,以逆转温度敏感性。通过使用现有的三维(3-D)结构,对 RNase E 的完整突变集(包括 TS 突变的 53 个主要突变和 23 个双突变)进行了分析,以研究它们对 RNase E 结构和功能的可能影响。大多数单突变被预测会破坏结构的稳定性,而逆转 TS 表型的第二个突变点被预测会恢复结构的稳定性。携带 RNase E 中的单个或双突变(TS 和 TS 加第二个突变点)的三个同基因菌株对它们对 mRNA、rRNA 和 tRNA 的降解、积累和加工的影响进行了测试。在 rne mRNA 自身调控方面观察到最大的缺陷,这与能够拯救 tufA499 相关的生长缓慢表型相关。这与 RNase E 突变体在初始结合或随后切割对快速生长至关重要的 mRNA 中存在缺陷一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索