三磷酸腺苷似乎通过下丘脑神经垂体系统末梢和体部的不同受体起作用。
Adenosine trisphosphate appears to act via different receptors in terminals versus somata of the hypothalamic neurohypophysial system.
机构信息
Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01655, USA.
出版信息
J Neuroendocrinol. 2012 Apr;24(4):681-9. doi: 10.1111/j.1365-2826.2012.02293.x.
ATP-induced ionic currents were investigated in isolated terminals and somata of the hypothalamic neurohypophysial system (HNS). Both terminals and somata showed inward rectification of the ATP-induced currents and reversal near 0 mV. In terminals, ATP dose-dependently evoked an inactivating, inward current. However, in hypothalamic somata, ATP evoked a very slowly inactivating, inward current with a higher density, and different dose dependence (EC(50) of 50 μm in somata versus 9.6 μm in terminals). The ATP-induced currents, in both the HNS terminals and somata, were highly and reversibly inhibited by suramin, suggesting the involvement of a purinergic receptor (P2XR). However, the suramin inhibition was significantly different in the two HNS compartments (IC(50) of 3.6 μm in somata versus 11.6 μm in terminals). Also, both HNS compartments show significantly different responses to the purinergic receptor agonists: ATP-γ-S and benzoyl-benzoyl-ATP. Finally, there was an initial desensitisation to ATP upon successive stimulations in the terminals, which was not observed in the somata. These differences in EC(50) , inactivation, desensitisation and agonist sensitivity in terminals versus somata indicate that different P2X receptors mediate the responses in these two compartments of HNS neurones. Previous work has revealed mRNA transcripts for multiple purinergic receptors in micropunches of the hypothalamus. In the HNS terminals, the P2X purinergic receptor types P2X2, 3, 4 and 7 (but not 6) have been shown to exist in AVP terminals. Immonohistochemistry now indicates that P2X4R is only present in AVP terminals and that the P2X7R is found in both AVP and oxytocin terminals and somata. We speculate that these differences in receptor types reflects the specific function of endogenous ATP in the terminals versus somata of these central nervous system neurones.
我们研究了下丘脑神经垂体系统(HNS)的分离末端和胞体中的 ATP 诱导离子流。末端和胞体都表现出 ATP 诱导电流的内向整流和接近 0 mV 的反转。在末端,ATP 剂量依赖性地诱发失活的内向电流。然而,在下丘脑胞体中,ATP 诱发的是一种非常缓慢失活的内向电流,其密度更高,剂量依赖性不同(胞体中的 EC50 为 50μm,而末端中的 EC50 为 9.6μm)。HNS 末端和胞体中的 ATP 诱导电流均被苏拉明高度可逆抑制,表明涉及嘌呤能受体(P2XR)。然而,两种 HNS 隔室中的苏拉明抑制作用明显不同(胞体中的 IC50 为 3.6μm,而末端中的 IC50 为 11.6μm)。此外,两种 HNS 隔室对嘌呤能受体激动剂:ATP-γ-S 和苯甲酰基-苯甲酰基-ATP 的反应明显不同。最后,在末端中,连续刺激时会出现对 ATP 的初始脱敏,而在胞体中则不会观察到这种情况。这些 EC50、失活、脱敏和激动剂敏感性在末端与胞体之间的差异表明,不同的 P2X 受体介导了 HNS 神经元这两个隔室的反应。先前的工作已经在下丘脑的微穿孔中揭示了多种嘌呤能受体的 mRNA 转录本。在 HNS 末端,已经证明存在 P2X 嘌呤能受体类型 P2X2、3、4 和 7(但不是 6)在 AVP 末端。免疫组织化学现在表明,P2X4R 仅存在于 AVP 末端,而 P2X7R 存在于 AVP 和催产素末端和胞体中。我们推测,这些受体类型的差异反映了内源性 ATP 在这些中枢神经系统神经元的末端与胞体中的特定功能。