基于循环酶信号放大和发夹型适体探针的蛋白质和小分子的通用比色检测。
General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe.
机构信息
The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, P.R. China.
出版信息
Anal Chem. 2012 Jun 19;84(12):5309-15. doi: 10.1021/ac3006186. Epub 2012 Jun 7.
In this work, we developed a simple and general method for highly sensitive detection of proteins and small molecules based on cyclic enzymatic signal amplification (CESA) and hairpin aptamer probe. Our detection system consists of a hairpin aptamer probe, a linker DNA, two sets of DNA-modified AuNPs, and nicking endonuclease (NEase). In the absence of a target, the hairpin aptamer probe and linker DNA can stably coexist in solution. Then, the linker DNA can assemble two sets of DNA-modified AuNPs, inducing the aggregation of AuNPs. However, in the presence of a target, the hairpin structure of aptamer probe is opened upon interaction with the target to form an aptamer probe-target complex. Then, the probe-target complex can hybridize to the linker DNA. Upon formation of the duplex, the NEase recognizes specific nucleotide sequence and cleaves the linker DNA into two fragments. After nicking, the released probe-target complex can hybridize with another intact linker DNA and the cycle starts anew. The cleaved fragments of linker DNA are not able to assemble two sets of DNA-modified AuNPs, thus a red color of separated AuNPs can be observed. Taking advantage of the AuNPs-based sensing technique, we are able to assay the target simply by UV-vis spectroscopy and even by the naked eye. Herein, we can detect the human thrombin with a detection limit of 50 pM and adenosine triphosphate (ATP) with a detection limit of 100 nM by the naked eye. This sensitivity is about 3 orders of magnitude higher than that of traditional AuNPs-based methods without amplification. In addition, this method is general since there is no requirement of the NEase recognition site in the aptamer sequence. Furthermore, we proved that the proposed method is capable of detecting the target in complicated biological samples.
在这项工作中,我们开发了一种基于循环酶信号放大(CESA)和发夹适体探针的简单而通用的蛋白质和小分子的高灵敏度检测方法。我们的检测系统由发夹适体探针、连接 DNA、两组 DNA 修饰的 AuNPs 和核酸内切酶(NEase)组成。在没有靶标存在的情况下,发夹适体探针和连接 DNA 可以稳定地共存于溶液中。然后,连接 DNA 可以组装两组 DNA 修饰的 AuNPs,诱导 AuNPs 的聚集。然而,在存在靶标的情况下,适体探针的发夹结构与靶标相互作用后打开,形成适体探针-靶标复合物。然后,探针-靶标复合物可以与连接 DNA 杂交。形成双链体后,NEase 识别特定的核苷酸序列并将连接 DNA 切割成两个片段。切割后,释放的探针-靶标复合物可以与另一个完整的连接 DNA 杂交,循环重新开始。连接 DNA 的切割片段不能组装两组 DNA 修饰的 AuNPs,因此可以观察到分离的 AuNPs 的红色。利用基于 AuNPs 的传感技术,我们可以通过紫外-可见光谱甚至肉眼简单地测定靶标。在此,我们可以通过肉眼检测到 50 pM 的人凝血酶和 100 nM 的三磷酸腺苷(ATP)。与没有放大的传统基于 AuNPs 的方法相比,这种灵敏度提高了约 3 个数量级。此外,由于适体序列中不需要 NEase 识别位点,因此该方法具有通用性。此外,我们证明了该方法能够在复杂的生物样品中检测到靶标。