多元数据集偏条件化的因果信息方法。

Causal information approach to partial conditioning in multivariate data sets.

机构信息

Department of Data Analysis, Faculty of Psychology and Pedagogical Sciences, University of Gent, 9000 Gent, Belgium.

出版信息

Comput Math Methods Med. 2012;2012:303601. doi: 10.1155/2012/303601. Epub 2012 May 21.

Abstract

When evaluating causal influence from one time series to another in a multivariate data set it is necessary to take into account the conditioning effect of the other variables. In the presence of many variables and possibly of a reduced number of samples, full conditioning can lead to computational and numerical problems. In this paper, we address the problem of partial conditioning to a limited subset of variables, in the framework of information theory. The proposed approach is tested on simulated data sets and on an example of intracranial EEG recording from an epileptic subject. We show that, in many instances, conditioning on a small number of variables, chosen as the most informative ones for the driver node, leads to results very close to those obtained with a fully multivariate analysis and even better in the presence of a small number of samples. This is particularly relevant when the pattern of causalities is sparse.

摘要

当评估多元数据集从一个时间序列到另一个时间序列的因果影响时,有必要考虑其他变量的条件作用。在存在许多变量和可能样本数量较少的情况下,完全条件化可能会导致计算和数值问题。在本文中,我们在信息论的框架内解决了对有限变量子集的部分条件化问题。所提出的方法在模拟数据集和癫痫患者颅内 EEG 记录的示例上进行了测试。我们表明,在许多情况下,对少数几个变量进行条件化,选择最能说明驱动节点的变量,会得到与完全多元分析非常接近的结果,在样本数量较少的情况下甚至更好。当因果关系模式稀疏时,这一点尤其重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f3/3364562/6640bc637389/CMMM2012-303601.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索