DNA 甲基转移酶对 CpG 和非 CpG DNA 甲基化的体内控制。
In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases.
机构信息
Department of Biological Sciences, Institute of Genetics/Epigenetics, University of Saarland, Saarbrücken, Germany.
出版信息
PLoS Genet. 2012 Jun;8(6):e1002750. doi: 10.1371/journal.pgen.1002750. Epub 2012 Jun 28.
The enzymatic control of the setting and maintenance of symmetric and non-symmetric DNA methylation patterns in a particular genome context is not well understood. Here, we describe a comprehensive analysis of DNA methylation patterns generated by high resolution sequencing of hairpin-bisulfite amplicons of selected single copy genes and repetitive elements (LINE1, B1, IAP-LTR-retrotransposons, and major satellites). The analysis unambiguously identifies a substantial amount of regional incomplete methylation maintenance, i.e. hemimethylated CpG positions, with variant degrees among cell types. Moreover, non-CpG cytosine methylation is confined to ESCs and exclusively catalysed by Dnmt3a and Dnmt3b. This sequence position-, cell type-, and region-dependent non-CpG methylation is strongly linked to neighboring CpG methylation and requires the presence of Dnmt3L. The generation of a comprehensive data set of 146,000 CpG dyads was used to apply and develop parameter estimated hidden Markov models (HMM) to calculate the relative contribution of DNA methyltransferases (Dnmts) for de novo and maintenance DNA methylation. The comparative modelling included wild-type ESCs and mutant ESCs deficient for Dnmt1, Dnmt3a, Dnmt3b, or Dnmt3a/3b, respectively. The HMM analysis identifies a considerable de novo methylation activity for Dnmt1 at certain repetitive elements and single copy sequences. Dnmt3a and Dnmt3b contribute de novo function. However, both enzymes are also essential to maintain symmetrical CpG methylation at distinct repetitive and single copy sequences in ESCs.
在特定基因组背景下,酶对对称和非对称 DNA 甲基化模式的建立和维持的控制机制尚未得到很好的理解。在这里,我们描述了对通过高分辨率测序生成的发夹 - 亚硫酸氢盐扩增子的 DNA 甲基化模式的全面分析,所选的单拷贝基因和重复元件(LINE1、B1、IAP-LTR-逆转录转座子和主要卫星)。该分析明确鉴定了大量区域不完全甲基化维持,即半甲基化 CpG 位置,其在细胞类型之间具有不同程度。此外,非 CpG 胞嘧啶甲基化仅限于 ESC ,并且仅由 Dnmt3a 和 Dnmt3b 催化。这种序列位置、细胞类型和区域依赖性的非 CpG 甲基化与邻近的 CpG 甲基化强烈相关,并且需要 Dnmt3L 的存在。生成了 146,000 个 CpG 二联体的综合数据集,用于应用和开发参数估计的隐马尔可夫模型(HMM)来计算从头和维持 DNA 甲基转移酶(Dnmts)对新生成的 CpG 二联体的相对贡献。比较建模包括野生型 ESC 和分别缺乏 Dnmt1、Dnmt3a、Dnmt3b 或 Dnmt3a/3b 的突变型 ESC。HMM 分析确定了 Dnmt1 在某些重复元件和单拷贝序列上具有相当大的从头甲基化活性。Dnmt3a 和 Dnmt3b 具有从头甲基化功能。然而,这两种酶对于维持 ESC 中不同重复和单拷贝序列的对称 CpG 甲基化也是必不可少的。