Suppr超能文献

基于形状和上下文先验的最优多表面分割。

Optimal multiple surface segmentation with shape and context priors.

机构信息

Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA 52242, USA.

出版信息

IEEE Trans Med Imaging. 2013 Feb;32(2):376-86. doi: 10.1109/TMI.2012.2227120. Epub 2012 Nov 15.

Abstract

Segmentation of multiple surfaces in medical images is a challenging problem, further complicated by the frequent presence of weak boundary evidence, large object deformations, and mutual influence between adjacent objects. This paper reports a novel approach to multi-object segmentation that incorporates both shape and context prior knowledge in a 3-D graph-theoretic framework to help overcome the stated challenges. We employ an arc-based graph representation to incorporate a wide spectrum of prior information through pair-wise energy terms. In particular, a shape-prior term is used to penalize local shape changes and a context-prior term is used to penalize local surface-distance changes from a model of the expected shape and surface distances, respectively. The globally optimal solution for multiple surfaces is obtained by computing a maximum flow in a low-order polynomial time. The proposed method was validated on intraretinal layer segmentation of optical coherence tomography images and demonstrated statistically significant improvement of segmentation accuracy compared to our earlier graph-search method that was not utilizing shape and context priors. The mean unsigned surface positioning errors obtained by the conventional graph-search approach (6.30 ±1.58 μ m) was improved to 5.14±0.99 μ m when employing our new method with shape and context priors.

摘要

医学图像中多个表面的分割是一个具有挑战性的问题,由于边界证据较弱、物体变形大以及相邻物体之间的相互影响等因素,使得问题更加复杂。本文提出了一种新的多目标分割方法,该方法在三维图论框架中结合了形状和上下文先验知识,以帮助克服上述挑战。我们采用基于弧的图表示法,通过成对的能量项来整合广泛的先验信息。具体来说,使用形状先验项来惩罚局部形状变化,使用上下文先验项来惩罚局部表面距离相对于期望形状和表面距离模型的变化。通过计算低阶多项式时间内的最大流来获得多个表面的全局最优解。该方法在光学相干断层扫描图像的视网膜内部分层中进行了验证,与我们之前未利用形状和上下文先验的图搜索方法相比,分割准确性有了显著提高。在使用我们的新方法结合形状和上下文先验时,传统的图搜索方法(6.30±1.58μm)得到的平均无符号表面定位误差提高到了 5.14±0.99μm。

相似文献

1
Optimal multiple surface segmentation with shape and context priors.
IEEE Trans Med Imaging. 2013 Feb;32(2):376-86. doi: 10.1109/TMI.2012.2227120. Epub 2012 Nov 15.
3
Background removal of multiview images by learning shape priors.
IEEE Trans Image Process. 2007 Oct;16(10):2607-16. doi: 10.1109/tip.2007.904465.
4
Deformable segmentation via sparse representation and dictionary learning.
Med Image Anal. 2012 Oct;16(7):1385-96. doi: 10.1016/j.media.2012.07.007. Epub 2012 Aug 23.
5
Optimal graph search segmentation using arc-weighted graph for simultaneous surface detection of bladder and prostate.
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):827-35. doi: 10.1007/978-3-642-04271-3_100.
6
Shape sparse representation for joint object classification and segmentation.
IEEE Trans Image Process. 2013 Mar;22(3):992-1004. doi: 10.1109/TIP.2012.2226044. Epub 2012 Oct 22.
8
Globally optimal tumor segmentation in PET-CT images: a graph-based co-segmentation method.
Inf Process Med Imaging. 2011;22:245-56. doi: 10.1007/978-3-642-22092-0_21.
9
Dynamical statistical shape priors for level set-based tracking.
IEEE Trans Pattern Anal Mach Intell. 2006 Aug;28(8):1262-73. doi: 10.1109/TPAMI.2006.161.
10
Multi-class constrained normalized cut with hard, soft, unary and pairwise priors and its applications to object segmentation.
IEEE Trans Image Process. 2013 Nov;22(11):4328-40. doi: 10.1109/TIP.2013.2271865. Epub 2013 Jul 3.

引用本文的文献

1
Boundary-Repairing Dual-Path Network for Retinal Layer Segmentation in OCT Image with Pigment Epithelial Detachment.
J Imaging Inform Med. 2024 Dec;37(6):3101-3130. doi: 10.1007/s10278-024-01093-y. Epub 2024 May 13.
3
Deep learning network with differentiable dynamic programming for retina OCT surface segmentation.
Biomed Opt Express. 2023 Jun 8;14(7):3190-3202. doi: 10.1364/BOE.492670. eCollection 2023 Jul 1.
5
Accurate tissue interface segmentation via adversarial pre-segmentation of anterior segment OCT images.
Biomed Opt Express. 2019 Sep 20;10(10):5291-5324. doi: 10.1364/BOE.10.005291. eCollection 2019 Oct 1.
6
Optimal surface segmentation with convex priors in irregularly sampled space.
Med Image Anal. 2019 May;54:63-75. doi: 10.1016/j.media.2019.02.004. Epub 2019 Feb 8.
7
Automatic three-dimensional segmentation of endoscopic airway OCT images.
Biomed Opt Express. 2019 Jan 17;10(2):642-656. doi: 10.1364/BOE.10.000642. eCollection 2019 Feb 1.
8
Multiple surface segmentation using convolution neural nets: application to retinal layer segmentation in OCT images.
Biomed Opt Express. 2018 Aug 29;9(9):4509-4526. doi: 10.1364/BOE.9.004509. eCollection 2018 Sep 1.
9
Three-dimensional graph-based skin layer segmentation in optical coherence tomography images for roughness estimation.
Biomed Opt Express. 2018 Jul 6;9(8):3590-3606. doi: 10.1364/BOE.9.003590. eCollection 2018 Aug 1.
10
Shared-hole graph search with adaptive constraints for 3D optic nerve head optical coherence tomography image segmentation.
Biomed Opt Express. 2018 Feb 2;9(3):962-983. doi: 10.1364/BOE.9.000962. eCollection 2018 Mar 1.

本文引用的文献

1
Order preserving and shape prior constrained intra-retinal layer segmentation in optical coherence tomography.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):370-7. doi: 10.1007/978-3-642-23626-6_46.
2
Automated 3-D segmentation of lungs with lung cancer in CT data using a novel robust active shape model approach.
IEEE Trans Med Imaging. 2012 Feb;31(2):449-60. doi: 10.1109/TMI.2011.2171357. Epub 2011 Oct 13.
3
Vessel boundary delineation on fundus images using graph-based approach.
IEEE Trans Med Imaging. 2011 Jun;30(6):1184-91. doi: 10.1109/TMI.2010.2103566. Epub 2011 Jan 6.
4
Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach.
IEEE Trans Med Imaging. 2011 Feb;30(2):484-96. doi: 10.1109/TMI.2010.2087390. Epub 2010 Oct 14.
5
LOGISMOS--layered optimal graph image segmentation of multiple objects and surfaces: cartilage segmentation in the knee joint.
IEEE Trans Med Imaging. 2010 Dec;29(12):2023-37. doi: 10.1109/TMI.2010.2058861. Epub 2010 Jul 19.
6
Intra-retinal layer segmentation in optical coherence tomography using an active contour approach.
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):649-56. doi: 10.1007/978-3-642-04271-3_79.
7
Intra-retinal layer segmentation in optical coherence tomography images.
Opt Express. 2009 Dec 21;17(26):23719-28. doi: 10.1364/OE.17.023719.
8
Congenital aortic disease: 4D magnetic resonance segmentation and quantitative analysis.
Med Image Anal. 2009 Jun;13(3):483-93. doi: 10.1016/j.media.2009.02.005. Epub 2009 Feb 21.
9
Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images.
IEEE Trans Med Imaging. 2009 Sep;28(9):1436-47. doi: 10.1109/TMI.2009.2016958. Epub 2009 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验