基于 Grassmann 流形的部分遮挡处理的视觉目标跟踪的非线性动态模型。

Nonlinear dynamic model for visual object tracking on Grassmann manifolds with partial occlusion handling.

出版信息

IEEE Trans Cybern. 2013 Dec;43(6):2005-19. doi: 10.1109/TSMCB.2013.2237900.

Abstract

This paper proposes a novel Bayesian online learning and tracking scheme for video objects on Grassmann manifolds. Although manifold visual object tracking is promising, large and fast nonplanar (or out-of-plane) pose changes and long-term partial occlusions of deformable objects in video remain a challenge that limits the tracking performance. The proposed method tackles these problems with the main novelties on: 1) online estimation of object appearances on Grassmann manifolds; 2) optimal criterion-based occlusion handling for online updating of object appearances; 3) a nonlinear dynamic model for both the appearance basis matrix and its velocity; and 4) Bayesian formulations, separately for the tracking process and the online learning process, that are realized by employing two particle filters: one is on the manifold for generating appearance particles and another on the linear space for generating affine box particles. Tracking and online updating are performed in an alternating fashion to mitigate the tracking drift. Experiments using the proposed tracker on videos captured by a single dynamic/static camera have shown robust tracking performance, particularly for scenarios when target objects contain significant nonplanar pose changes and long-term partial occlusions. Comparisons with eight existing state-of-the-art/most relevant manifold/nonmanifold trackers with evaluations have provided further support to the proposed scheme.

摘要

本文提出了一种新颖的贝叶斯在线学习和跟踪方案,用于 Grassmann 流形上的视频目标。尽管流形视觉目标跟踪具有很大的潜力,但大的和快速的非平面(或离面)姿态变化以及视频中可变形目标的长期部分遮挡仍然是限制跟踪性能的挑战。该方法通过以下主要创新点解决了这些问题:1)在 Grassmann 流形上在线估计目标外观;2)基于最优准则的遮挡处理,用于在线更新目标外观;3)用于外观基矩阵及其速度的非线性动态模型;4)分别用于跟踪过程和在线学习过程的贝叶斯公式,通过使用两个粒子滤波器来实现:一个在流形上生成外观粒子,另一个在线性空间上生成仿射盒粒子。跟踪和在线更新以交替的方式进行,以减轻跟踪漂移。在使用单动态/静态摄像机拍摄的视频上进行的实验表明,该跟踪器具有稳健的跟踪性能,特别是在目标对象包含显著的非平面姿态变化和长期部分遮挡的情况下。与八个现有的最先进的/最相关的流形/非流形跟踪器的评估比较进一步支持了该方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索