Department of Computer and Information Science, College of Science and Technology, Korea University, Sejong 339-700, Korea.
Sensors (Basel). 2013 Sep 25;13(10):12929-42. doi: 10.3390/s131012929.
Automatic detection of pig wasting diseases is an important issue in the management of group-housed pigs. Further, respiratory diseases are one of the main causes of mortality among pigs and loss of productivity in intensive pig farming. In this study, we propose an efficient data mining solution for the detection and recognition of pig wasting diseases using sound data in audio surveillance systems. In this method, we extract the Mel Frequency Cepstrum Coefficients (MFCC) from sound data with an automatic pig sound acquisition process, and use a hierarchical two-level structure: the Support Vector Data Description (SVDD) and the Sparse Representation Classifier (SRC) as an early anomaly detector and a respiratory disease classifier, respectively. Our experimental results show that this new method can be used to detect pig wasting diseases both economically (even a cheap microphone can be used) and accurately (94% detection and 91% classification accuracy), either as a standalone solution or to complement known methods to obtain a more accurate solution.
自动检测猪群疾病是集约化养猪管理中的一个重要问题。此外,呼吸系统疾病是导致猪死亡和生产力下降的主要原因之一。在本研究中,我们提出了一种使用音频监控系统中的声音数据进行猪群疾病检测和识别的高效数据挖掘解决方案。在该方法中,我们使用自动猪声音采集过程从声音数据中提取梅尔频率倒谱系数(MFCC),并使用分层两级结构:支持向量数据描述(SVDD)和稀疏表示分类器(SRC)作为早期异常检测器和呼吸疾病分类器。我们的实验结果表明,这种新方法不仅可以经济地(甚至可以使用廉价的麦克风)而且可以准确地(检测准确率为 94%,分类准确率为 91%)用于检测猪群疾病,既可以作为独立的解决方案,也可以补充已知的方法以获得更准确的解决方案。