Suppr超能文献

通过多标签分类对功能成像实验进行自动注释。

Automated annotation of functional imaging experiments via multi-label classification.

机构信息

Department of Computer Science, University of New Mexico Albuquerque, NM, USA ; Mind Research Network Albuquerque, NM, USA ; Conjectural Systems Atlanta, GA, USA.

Department of Computer Science, University of New Mexico Albuquerque, NM, USA.

出版信息

Front Neurosci. 2013 Dec 16;7:240. doi: 10.3389/fnins.2013.00240. eCollection 2013.

Abstract

Identifying the experimental methods in human neuroimaging papers is important for grouping meaningfully similar experiments for meta-analyses. Currently, this can only be done by human readers. We present the performance of common machine learning (text mining) methods applied to the problem of automatically classifying or labeling this literature. Labeling terms are from the Cognitive Paradigm Ontology (CogPO), the text corpora are abstracts of published functional neuroimaging papers, and the methods use the performance of a human expert as training data. We aim to replicate the expert's annotation of multiple labels per abstract identifying the experimental stimuli, cognitive paradigms, response types, and other relevant dimensions of the experiments. We use several standard machine learning methods: naive Bayes (NB), k-nearest neighbor, and support vector machines (specifically SMO or sequential minimal optimization). Exact match performance ranged from only 15% in the worst cases to 78% in the best cases. NB methods combined with binary relevance transformations performed strongly and were robust to overfitting. This collection of results demonstrates what can be achieved with off-the-shelf software components and little to no pre-processing of raw text.

摘要

确定人类神经影像学论文中的实验方法对于对类似实验进行元分析具有重要意义。目前,这只能由人工读者完成。我们展示了常见机器学习(文本挖掘)方法在自动分类或标记该文献问题上的性能。标签术语来自认知范式本体(CogPO),文本语料库是已发表的功能神经影像学论文的摘要,而方法则使用人类专家的性能作为训练数据。我们旨在复制专家对每个摘要的多个标签的注释,这些标签用于识别实验刺激、认知范式、响应类型以及实验的其他相关维度。我们使用了几种标准的机器学习方法:朴素贝叶斯(NB)、k-最近邻和支持向量机(特别是 SMO 或顺序最小优化)。精确匹配性能在最差情况下仅为 15%,在最佳情况下为 78%。与二进制相关性转换相结合的 NB 方法性能强劲,并且对过拟合具有鲁棒性。这一系列结果表明,使用现成的软件组件和几乎不需要对原始文本进行预处理就可以实现什么。

相似文献

1
Automated annotation of functional imaging experiments via multi-label classification.
Front Neurosci. 2013 Dec 16;7:240. doi: 10.3389/fnins.2013.00240. eCollection 2013.
2
Automated, Efficient, and Accelerated Knowledge Modeling of the Cognitive Neuroimaging Literature Using the ATHENA Toolkit.
Front Neurosci. 2019 May 15;13:494. doi: 10.3389/fnins.2019.00494. eCollection 2019.
3
Statistical algorithms for ontology-based annotation of scientific literature.
J Biomed Semantics. 2014 Jun 3;5(Suppl 1 Proceedings of the Bio-Ontologies Spec Interest G):S2. doi: 10.1186/2041-1480-5-S1-S2. eCollection 2014.
4
Multi-label literature classification based on the Gene Ontology graph.
BMC Bioinformatics. 2008 Dec 8;9:525. doi: 10.1186/1471-2105-9-525.
5
Construction accident narrative classification: An evaluation of text mining techniques.
Accid Anal Prev. 2017 Nov;108:122-130. doi: 10.1016/j.aap.2017.08.026. Epub 2017 Sep 1.
7
Evaluation of BioCreAtIvE assessment of task 2.
BMC Bioinformatics. 2005;6 Suppl 1(Suppl 1):S16. doi: 10.1186/1471-2105-6-S1-S16. Epub 2005 May 24.
8
Clinical Text Data in Machine Learning: Systematic Review.
JMIR Med Inform. 2020 Mar 31;8(3):e17984. doi: 10.2196/17984.
9
Prediction of cause of death from forensic autopsy reports using text classification techniques: A comparative study.
J Forensic Leg Med. 2018 Jul;57:41-50. doi: 10.1016/j.jflm.2017.07.001. Epub 2017 Jul 4.
10
Exploiting MEDLINE for gene molecular function prediction via NMF based multi-label classification.
J Biomed Inform. 2018 Oct;86:160-166. doi: 10.1016/j.jbi.2018.08.009. Epub 2018 Aug 18.

引用本文的文献

1
NeuroBridge: a prototype platform for discovery of the long-tail neuroimaging data.
Front Neuroinform. 2023 Aug 31;17:1215261. doi: 10.3389/fninf.2023.1215261. eCollection 2023.
4
Re-conceptualizing domains in neuroscience, hopes and utopias aside.
Nat Neurosci. 2021 Dec;24(12):1643-1644. doi: 10.1038/s41593-021-00946-x.
5
Automated, Efficient, and Accelerated Knowledge Modeling of the Cognitive Neuroimaging Literature Using the ATHENA Toolkit.
Front Neurosci. 2019 May 15;13:494. doi: 10.3389/fnins.2019.00494. eCollection 2019.
6
Heterogeneous fractionation profiles of meta-analytic coactivation networks.
Neuroimage. 2017 Apr 1;149:424-435. doi: 10.1016/j.neuroimage.2016.12.037. Epub 2017 Feb 20.
7
Neural architecture underlying classification of face perception paradigms.
Neuroimage. 2015 Oct 1;119:70-80. doi: 10.1016/j.neuroimage.2015.06.044. Epub 2015 Jun 18.
8
Multi-dimensional classification of GABAergic interneurons with Bayesian network-modeled label uncertainty.
Front Comput Neurosci. 2014 Nov 25;8:150. doi: 10.3389/fncom.2014.00150. eCollection 2014.
9
Bayesian networks in neuroscience: a survey.
Front Comput Neurosci. 2014 Oct 16;8:131. doi: 10.3389/fncom.2014.00131. eCollection 2014.
10
Statistical algorithms for ontology-based annotation of scientific literature.
J Biomed Semantics. 2014 Jun 3;5(Suppl 1 Proceedings of the Bio-Ontologies Spec Interest G):S2. doi: 10.1186/2041-1480-5-S1-S2. eCollection 2014.

本文引用的文献

2
An investigation of the structural, connectional, and functional subspecialization in the human amygdala.
Hum Brain Mapp. 2013 Dec;34(12):3247-66. doi: 10.1002/hbm.22138. Epub 2012 Jul 17.
3
Concept annotation in the CRAFT corpus.
BMC Bioinformatics. 2012 Jul 9;13:161. doi: 10.1186/1471-2105-13-161.
4
The cognitive atlas: toward a knowledge foundation for cognitive neuroscience.
Front Neuroinform. 2011 Sep 6;5:17. doi: 10.3389/fninf.2011.00017. eCollection 2011.
5
Large-scale automated synthesis of human functional neuroimaging data.
Nat Methods. 2011 Jun 26;8(8):665-70. doi: 10.1038/nmeth.1635.
6
The cognitive paradigm ontology: design and application.
Neuroinformatics. 2012 Jan;10(1):57-66. doi: 10.1007/s12021-011-9126-x.
7
Desiderata for ontologies to be used in semantic annotation of biomedical documents.
J Biomed Inform. 2011 Feb;44(1):94-101. doi: 10.1016/j.jbi.2010.10.002. Epub 2010 Oct 26.
8
9
Literature mining: Speed reading.
Nature. 2010 Jan 28;463(7280):416-8. doi: 10.1038/463416a.
10
Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling.
J Neurosci. 2009 Nov 18;29(46):14496-505. doi: 10.1523/JNEUROSCI.4004-09.2009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验