Van Reet Nick, Van de Vyver Hélène, Pyana Patient Pati, Van der Linden Anne Marie, Büscher Philippe
Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany.
PLoS Negl Trop Dis. 2014 Aug 21;8(8):e3054. doi: 10.1371/journal.pntd.0003054. eCollection 2014 Aug.
Genetic engineering with luciferase reporter genes allows monitoring Trypanosoma brucei (T.b.) infections in mice by in vivo bioluminescence imaging (BLI). Until recently, luminescent T.b. models were based on Renilla luciferase (RLuc) activity. Our study aimed at evaluating red-shifted luciferases for in vivo BLI in a set of diverse T.b. strains of all three subspecies, including some recently isolated from human patients.
METHODOLOGY/PRINCIPAL FINDINGS: We transfected T.b. brucei, T.b. rhodesiense and T.b. gambiense strains with either RLuc, click beetle red (CBR) or Photinus pyralis RE9 (PpyRE9) luciferase and characterised their in vitro luciferase activity, growth profile and drug sensitivity, and their potential for in vivo BLI. Compared to RLuc, the red-shifted luciferases, CBR and PpyRE9, allow tracking of T.b. brucei AnTaR 1 trypanosomes with higher details on tissue distribution, and PpyRE9 allows detection of the parasites with a sensitivity of at least one order of magnitude higher than CBR luciferase. With CBR-tagged T.b. gambiense LiTaR1, T.b. rhodesiense RUMPHI and T.b. gambiense 348 BT in an acute, subacute and chronic infection model respectively, we observed differences in parasite tropism for murine tissues during in vivo BLI. Ex vivo BLI on the brain confirmed central nervous system infection by all luminescent strains of T.b. brucei AnTaR 1, T.b. rhodesiense RUMPHI and T.b. gambiense 348 BT.
CONCLUSIONS/SIGNIFICANCE: We established a genetically and phenotypically diverse collection of bioluminescent T.b. brucei, T.b. gambiense and T.b. rhodesiense strains, including drug resistant strains. For in vivo BLI monitoring of murine infections, we recommend trypanosome strains transfected with red-shifted luciferase reporter genes, such as CBR and PpyRE9. Red-shifted luciferases can be detected with a higher sensitivity in vivo and at the same time they improve the spatial resolution of the parasites in the entire body due to the better kinetics of their substrate D-luciferin.
利用荧光素酶报告基因进行基因工程,可通过体内生物发光成像(BLI)监测小鼠体内的布氏锥虫(T.b.)感染。直到最近,发光的T.b.模型都是基于海肾荧光素酶(RLuc)活性。我们的研究旨在评估红移荧光素酶在一组来自所有三个亚种的不同T.b.菌株中的体内BLI应用,其中包括一些最近从人类患者中分离出的菌株。
方法/主要发现:我们用RLuc、叩头虫红(CBR)或萤火虫RE9(PpyRE9)荧光素酶转染布氏锥虫、罗德西亚锥虫和冈比亚锥虫菌株,并对它们的体外荧光素酶活性、生长曲线、药物敏感性以及体内BLI潜力进行了表征。与RLuc相比,红移荧光素酶CBR和PpyRE9能够更详细地追踪布氏锥虫AnTaR 1锥虫的组织分布,并且PpyRE9检测寄生虫的灵敏度比CBR荧光素酶至少高一个数量级。分别用CBR标记的冈比亚锥虫LiTaR1、罗德西亚锥虫RUMPHI和冈比亚锥虫348 BT建立急性、亚急性和慢性感染模型,我们在体内BLI过程中观察到这些菌株在小鼠组织中的嗜性差异。对大脑进行离体BLI证实,布氏锥虫AnTaR 1、罗德西亚锥虫RUMPHI和冈比亚锥虫348 BT所有发光菌株均感染中枢神经系统。
结论/意义:我们建立了一个遗传和表型多样的发光布氏锥虫、冈比亚锥虫和罗德西亚锥虫菌株库,包括耐药菌株。对于小鼠感染的体内BLI监测,我们推荐用红移荧光素酶报告基因转染的锥虫菌株,如CBR和PpyRE9。红移荧光素酶在体内能够以更高的灵敏度被检测到,同时由于其底物D -荧光素更好的动力学特性,可以提高寄生虫在全身的空间分辨率。