二甲双胍直接作用于线粒体,改变细胞的生物能量学。
Metformin directly acts on mitochondria to alter cellular bioenergetics.
机构信息
Goodman Cancer Research Centre, McGill University, 1160 Pine Ave. West, Montréal, QC H3A 1A3, Canada ; Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada.
Lady Davis Institute for Medical Research, McGill University, 3755 Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada ; Cancer Prevention Center, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada ; Department of Oncology, McGill University, 546 Pine Ave. W., Montréal, QC H2W 1S6, Canada.
出版信息
Cancer Metab. 2014 Aug 28;2:12. doi: 10.1186/2049-3002-2-12. eCollection 2014.
BACKGROUND
Metformin is widely used in the treatment of diabetes, and there is interest in 'repurposing' the drug for cancer prevention or treatment. However, the mechanism underlying the metabolic effects of metformin remains poorly understood.
METHODS
We performed respirometry and stable isotope tracer analyses on cells and isolated mitochondria to investigate the impact of metformin on mitochondrial functions.
RESULTS
We show that metformin decreases mitochondrial respiration, causing an increase in the fraction of mitochondrial respiration devoted to uncoupling reactions. Thus, cells treated with metformin become energetically inefficient, and display increased aerobic glycolysis and reduced glucose metabolism through the citric acid cycle. Conflicting prior studies proposed mitochondrial complex I or various cytosolic targets for metformin action, but we show that the compound limits respiration and citric acid cycle activity in isolated mitochondria, indicating that at least for these effects, the mitochondrion is the primary target. Finally, we demonstrate that cancer cells exposed to metformin display a greater compensatory increase in aerobic glycolysis than nontransformed cells, highlighting their metabolic vulnerability. Prevention of this compensatory metabolic event in cancer cells significantly impairs survival.
CONCLUSIONS
Together, these results demonstrate that metformin directly acts on mitochondria to limit respiration and that the sensitivity of cells to metformin is dependent on their ability to cope with energetic stress.
背景
二甲双胍广泛用于治疗糖尿病,人们对将该药物“重新用于”癌症预防或治疗很感兴趣。然而,二甲双胍对代谢的影响的机制仍知之甚少。
方法
我们对细胞和分离的线粒体进行呼吸测定和稳定同位素示踪分析,以研究二甲双胍对线粒体功能的影响。
结果
我们表明,二甲双胍可降低线粒体呼吸,导致与解偶联反应相关的线粒体呼吸比例增加。因此,用二甲双胍处理的细胞变得能量效率低下,并通过柠檬酸循环表现出增加的有氧糖酵解和减少的葡萄糖代谢。先前相互矛盾的研究提出了线粒体复合物 I 或各种细胞质靶标作为二甲双胍的作用部位,但我们表明该化合物限制了分离线粒体中的呼吸和柠檬酸循环活性,表明至少对于这些作用,线粒体是主要靶标。最后,我们证明暴露于二甲双胍的癌细胞比非转化细胞显示出更大的有氧糖酵解代偿性增加,突出了它们的代谢脆弱性。预防癌细胞中的这种代偿性代谢事件会显著损害其存活能力。
结论
综上所述,这些结果表明二甲双胍直接作用于线粒体以限制呼吸,并且细胞对二甲双胍的敏感性取决于其应对能量应激的能力。