诸如运动接触抑制等极性机制可调节哺乳动物细胞在微图案上的持续旋转运动。
Polarity mechanisms such as contact inhibition of locomotion regulate persistent rotational motion of mammalian cells on micropatterns.
作者信息
Camley Brian A, Zhang Yunsong, Zhao Yanxiang, Li Bo, Ben-Jacob Eshel, Levine Herbert, Rappel Wouter-Jan
机构信息
Departments of Physics and Center for Theoretical Biological Physics, University of California, San Diego, La Jolla, CA 92093; Departments of.
Physics and Astronomy and Center for Theoretical Biological Physics, Rice University, Houston, TX 77005;
出版信息
Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14770-5. doi: 10.1073/pnas.1414498111. Epub 2014 Sep 25.
Pairs of endothelial cells on adhesive micropatterns rotate persistently, but pairs of fibroblasts do not; coherent rotation is present in normal mammary acini and kidney cells but absent in cancerous cells. Why? To answer this question, we develop a computational model of pairs of mammalian cells on adhesive micropatterns using a phase field method and study the conditions under which persistent rotational motion (PRM) emerges. Our model couples the shape of the cell, the cell's internal chemical polarity, and interactions between cells such as volume exclusion and adhesion. We show that PRM can emerge from this minimal model and that the cell-cell interface may be influenced by the nucleus. We study the effect of various cell polarity mechanisms on rotational motion, including contact inhibition of locomotion, neighbor alignment, and velocity alignment, where cells align their polarity to their velocity. These polarity mechanisms strongly regulate PRM: Small differences in polarity mechanisms can create significant differences in collective rotation. We argue that the existence or absence of rotation under confinement may lead to insight into the cell's methods for coordinating collective cell motility.
粘附微图案上的内皮细胞对持续旋转,但成纤维细胞对则不然;正常乳腺腺泡和肾细胞中存在连贯旋转,而癌细胞中则不存在。为什么?为了回答这个问题,我们使用相场方法建立了粘附微图案上哺乳动物细胞对的计算模型,并研究了出现持续旋转运动(PRM)的条件。我们的模型将细胞形状、细胞内部化学极性以及细胞间相互作用(如体积排斥和粘附)耦合在一起。我们表明,PRM可以从这个最小模型中出现,并且细胞-细胞界面可能受细胞核影响。我们研究了各种细胞极性机制对旋转运动的影响,包括运动接触抑制、邻居对齐和速度对齐,即细胞将其极性与速度对齐。这些极性机制强烈调节PRM:极性机制的微小差异会在集体旋转中产生显著差异。我们认为,受限条件下旋转的存在与否可能有助于深入了解细胞协调集体细胞运动的方法。