肌肉优化技术会影响计算得出的髋关节接触力的大小。
Muscle optimization techniques impact the magnitude of calculated hip joint contact forces.
作者信息
Wesseling Mariska, Derikx Loes C, de Groote Friedl, Bartels Ward, Meyer Christophe, Verdonschot Nico, Jonkers Ilse
机构信息
Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium.
出版信息
J Orthop Res. 2015 Mar;33(3):430-8. doi: 10.1002/jor.22769. Epub 2014 Dec 9.
In musculoskeletal modelling, several optimization techniques are used to calculate muscle forces, which strongly influence resultant hip contact forces (HCF). The goal of this study was to calculate muscle forces using four different optimization techniques, i.e., two different static optimization techniques, computed muscle control (CMC) and the physiological inverse approach (PIA). We investigated their subsequent effects on HCFs during gait and sit to stand and found that at the first peak in gait at 15-20% of the gait cycle, CMC calculated the highest HCFs (median 3.9 times peak GRF (pGRF)). When comparing calculated HCFs to experimental HCFs reported in literature, the former were up to 238% larger. Both static optimization techniques produced lower HCFs (median 3.0 and 3.1 pGRF), while PIA included muscle dynamics without an excessive increase in HCF (median 3.2 pGRF). The increased HCFs in CMC were potentially caused by higher muscle forces resulting from co-contraction of agonists and antagonists around the hip. Alternatively, these higher HCFs may be caused by the slightly poorer tracking of the net joint moment by the muscle moments calculated by CMC. We conclude that the use of different optimization techniques affects calculated HCFs, and static optimization approached experimental values best.
在肌肉骨骼建模中,多种优化技术被用于计算肌肉力量,而肌肉力量会对髋关节合力(HCF)产生强烈影响。本研究的目的是使用四种不同的优化技术来计算肌肉力量,即两种不同的静态优化技术、计算肌肉控制(CMC)和生理逆方法(PIA)。我们研究了它们在步态和从坐到站过程中对髋关节合力的后续影响,发现在步态周期15%-20%时的第一个步态峰值处,CMC计算出的髋关节合力最高(中位数为峰值地面反作用力(pGRF)的3.9倍)。将计算出的髋关节合力与文献中报道的实验髋关节合力进行比较时,前者比后者大238%。两种静态优化技术产生的髋关节合力较低(中位数分别为3.0和3.1倍pGRF),而PIA考虑了肌肉动力学,且髋关节合力没有过度增加(中位数为3.2倍pGRF)。CMC中髋关节合力增加可能是由于髋关节周围的主动肌和拮抗肌共同收缩导致肌肉力量增加。或者,这些较高的髋关节合力可能是由于CMC计算的肌肉力矩对净关节力矩的跟踪稍差所致。我们得出结论,使用不同的优化技术会影响计算出的髋关节合力,且静态优化最接近实验值。