Suppr超能文献

内源性帕金森蛋白在线粒体DNA诱变应激后可保护黑质多巴胺能神经元。

Endogenous Parkin Preserves Dopaminergic Substantia Nigral Neurons following Mitochondrial DNA Mutagenic Stress.

作者信息

Pickrell Alicia M, Huang Chiu-Hui, Kennedy Scott R, Ordureau Alban, Sideris Dionisia P, Hoekstra Jake G, Harper J Wade, Youle Richard J

机构信息

Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.

Department of Pathology, University of Washington, Seattle, WA 98104, USA.

出版信息

Neuron. 2015 Jul 15;87(2):371-81. doi: 10.1016/j.neuron.2015.06.034.

Abstract

Parkinson's disease (PD) is a neurodegenerative disease caused by the loss of dopaminergic neurons in the substantia nigra. PARK2 mutations cause early-onset forms of PD. PARK2 encodes an E3 ubiquitin ligase, Parkin, that can selectively translocate to dysfunctional mitochondria to promote their removal by autophagy. However, Parkin knockout (KO) mice do not display signs of neurodegeneration. To assess Parkin function in vivo, we utilized a mouse model that accumulates dysfunctional mitochondria caused by an accelerated generation of mtDNA mutations (Mutator mice). In the absence of Parkin, dopaminergic neurons in Mutator mice degenerated causing an L-DOPA reversible motor deficit. Other neuronal populations were unaffected. Phosphorylated ubiquitin was increased in the brains of Mutator mice, indicating PINK1-Parkin activation. Parkin loss caused mitochondrial dysfunction and affected the pathogenicity but not the levels of mtDNA somatic mutations. A systemic loss of Parkin synergizes with mitochondrial dysfunction causing dopaminergic neuron death modeling PD pathogenic processes.

摘要

帕金森病(PD)是一种由黑质中多巴胺能神经元缺失引起的神经退行性疾病。PARK2基因突变导致早发性帕金森病。PARK2编码一种E3泛素连接酶——帕金蛋白(Parkin),它可以选择性地转移到功能失调的线粒体,通过自噬促进其清除。然而,帕金蛋白基因敲除(KO)小鼠并未表现出神经退行性变的迹象。为了评估帕金蛋白在体内的功能,我们利用了一种小鼠模型,该模型积累了由线粒体DNA突变加速产生导致的功能失调的线粒体(突变小鼠)。在没有帕金蛋白的情况下,突变小鼠中的多巴胺能神经元退化,导致左旋多巴可逆性运动缺陷。其他神经元群体未受影响。突变小鼠大脑中磷酸化泛素增加,表明PINK1-帕金蛋白被激活。帕金蛋白缺失导致线粒体功能障碍,并影响致病性,但不影响线粒体DNA体细胞突变的水平。帕金蛋白的全身性缺失与线粒体功能障碍协同作用,导致多巴胺能神经元死亡,模拟帕金森病的致病过程。

相似文献

2
Mutant Twinkle increases dopaminergic neurodegeneration, mtDNA deletions and modulates Parkin expression.
Hum Mol Genet. 2012 Dec 1;21(23):5147-58. doi: 10.1093/hmg/dds365. Epub 2012 Sep 4.
3
Lack of Parkin Anticipates the Phenotype and Affects Mitochondrial Morphology and mtDNA Levels in a Mouse Model of Parkinson's Disease.
J Neurosci. 2018 Jan 24;38(4):1042-1053. doi: 10.1523/JNEUROSCI.1384-17.2017. Epub 2017 Dec 8.
4
The Absence of Parkin Does Not Promote Dopamine or Mitochondrial Dysfunction in PolgA Mitochondrial Mutator Mice.
J Neurosci. 2022 Dec 7;42(49):9263-9277. doi: 10.1523/JNEUROSCI.0545-22.2022. Epub 2022 Oct 24.
7
Parkin deficiency accelerates consequences of mitochondrial DNA deletions and Parkinsonism.
Neurobiol Dis. 2017 Apr;100:30-38. doi: 10.1016/j.nbd.2016.12.024. Epub 2016 Dec 29.
9
Loss of Parkin contributes to mitochondrial turnover and dopaminergic neuronal loss in aged mice.
Neurobiol Dis. 2020 Mar;136:104717. doi: 10.1016/j.nbd.2019.104717. Epub 2019 Dec 15.
10
Genetic reduction of mitochondrial complex I function does not lead to loss of dopamine neurons in vivo.
Neurobiol Aging. 2015 Sep;36(9):2617-27. doi: 10.1016/j.neurobiolaging.2015.05.008. Epub 2015 May 16.

引用本文的文献

2
The Mitochondrial Foundations of Parkinson's Disease: Therapeutic Implications.
Aging Dis. 2025 Apr 28;16(5):2695-2720. doi: 10.14336/AD.2025.0440.
5
Canonical and noncanonical autophagy: involvement in Parkinson's disease.
Front Cell Dev Biol. 2025 Jan 30;13:1518991. doi: 10.3389/fcell.2025.1518991. eCollection 2025.
6
7
Targeting mitophagy in neurodegenerative diseases.
Nat Rev Drug Discov. 2025 Apr;24(4):276-299. doi: 10.1038/s41573-024-01105-0. Epub 2025 Jan 14.
8
Hematopoietic stem cell metabolism within the bone marrow niche - insights and opportunities.
Bioessays. 2025 Feb;47(2):e2400154. doi: 10.1002/bies.202400154. Epub 2024 Nov 6.
9
The role of PINK1-Parkin in mitochondrial quality control.
Nat Cell Biol. 2024 Oct;26(10):1639-1651. doi: 10.1038/s41556-024-01513-9. Epub 2024 Oct 2.
10
Mitochondrial protein deacetylation by SIRT3 in osteoclasts promotes bone resorption with aging in female mice.
Mol Metab. 2024 Oct;88:102012. doi: 10.1016/j.molmet.2024.102012. Epub 2024 Aug 16.

本文引用的文献

1
Quantifying ubiquitin signaling.
Mol Cell. 2015 May 21;58(4):660-76. doi: 10.1016/j.molcel.2015.02.020.
2
Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy.
Proc Natl Acad Sci U S A. 2015 May 26;112(21):6637-42. doi: 10.1073/pnas.1506593112. Epub 2015 May 12.
3
The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease.
Neuron. 2015 Jan 21;85(2):257-73. doi: 10.1016/j.neuron.2014.12.007.
5
Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis.
EMBO J. 2015 Feb 3;34(3):307-25. doi: 10.15252/embj.201489847. Epub 2014 Dec 19.
6
Mito-protective autophagy is impaired in erythroid cells of aged mtDNA-mutator mice.
Blood. 2015 Jan 1;125(1):162-74. doi: 10.1182/blood-2014-07-586396. Epub 2014 Nov 19.
7
Detecting ultralow-frequency mutations by Duplex Sequencing.
Nat Protoc. 2014 Nov;9(11):2586-606. doi: 10.1038/nprot.2014.170. Epub 2014 Oct 9.
8
Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis.
Mol Cell. 2014 Nov 6;56(3):360-375. doi: 10.1016/j.molcel.2014.09.007. Epub 2014 Oct 2.
9
Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin.
J Cell Biol. 2014 Sep 1;206(5):655-70. doi: 10.1083/jcb.201401070. Epub 2014 Aug 25.
10
The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy.
Nature. 2014 Jun 19;510(7505):370-5. doi: 10.1038/nature13418. Epub 2014 Jun 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验