运动知觉:行为与神经基础。

Motion perception: behavior and neural substrate.

机构信息

School of Psychology, University of Sussex, Brighton, BN1 9QH, UK.

出版信息

Wiley Interdiscip Rev Cogn Sci. 2011 May;2(3):305-314. doi: 10.1002/wcs.110. Epub 2010 Oct 28.

Abstract

Visual motion perception is vital for survival. Single-unit recordings in primate primary visual cortex (V1) have revealed the existence of specialized motion sensing neurons; perceptual effects such as the motion after-effect demonstrate their importance for motion perception. Human psychophysical data on motion detection can be explained by a computational model of cortical motion sensors. Both psychophysical and physiological data reveal at least two classes of motion sensor capable of sensing motion in luminance-defined and texture-defined patterns, respectively. Psychophysical experiments also reveal that motion can be seen independently of motion sensor output, based on attentive tracking of visual features. Sensor outputs are inherently ambiguous, due to the problem of univariance in neural responses. In order to compute stimulus direction and speed, the visual system must compare the responses of many different sensors sensitive to different directions and speeds. Physiological data show that this computation occurs in the visual middle temporal (MT) area. Recent psychophysical studies indicate that information about spatial form may also play a role in motion computations. Adaptation studies show that the human visual system is selectively sensitive to large-scale optic flow patterns, and physiological studies indicate that cells in the middle superior temporal (MST) area derive this sensitivity from the combined responses of many MT cells. Extraretinal signals used to control eye movements are an important source of signals to cancel out the retinal motion responses generated by eye movements, though visual information also plays a role. A number of issues remain to be resolved at all levels of the motion-processing hierarchy. WIREs Cogni Sci 2011 2 305-314 DOI: 10.1002/wcs.110 For further resources related to this article, please visit the WIREs website Additional Supporting Information may be found in http://www.lifesci.sussex.ac.uk/home/George_Mather/Motion/index.html.

摘要

视觉运动感知对生存至关重要。灵长类动物初级视觉皮层(V1)中的单细胞记录揭示了专门的运动感应神经元的存在;运动后效等知觉效应证明了它们对运动知觉的重要性。皮质运动传感器的计算模型可以解释人类关于运动检测的心理物理学数据。心理物理学和生理学数据都揭示了至少两类运动传感器,它们分别能够感知亮度定义和纹理定义模式中的运动。心理物理学实验还表明,基于对视觉特征的注意力跟踪,可以独立于运动传感器的输出来感知运动。由于神经反应的单变量问题,传感器的输出本质上是模糊的。为了计算刺激方向和速度,视觉系统必须比较许多对不同方向和速度敏感的不同传感器的响应。生理数据表明,这种计算发生在视觉中颞(MT)区。最近的心理物理学研究表明,关于空间形式的信息也可能在运动计算中发挥作用。适应研究表明,人类视觉系统对大尺度光流模式具有选择性敏感性,而生理学研究表明,中颞上(MST)区域的细胞从许多 MT 细胞的联合反应中获得这种敏感性。用于控制眼球运动的视网膜外信号是消除由眼球运动产生的视网膜运动反应的重要信号源,尽管视觉信息也发挥了作用。在运动处理层次的所有级别上,仍有许多问题有待解决。WIREs Cogni Sci 2011 2 305-314 DOI: 10.1002/wcs.110 如需获取本文相关资源,请访问 WIREs 网站。有关本文的其他支持信息可在 http://www.lifesci.sussex.ac.uk/home/George_Mather/Motion/index.html 找到。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索