Suppr超能文献

GPUDePiCt:一种用于在图形处理单元上计算简并引物的聚类算法的并行实现。

GPUDePiCt: A Parallel Implementation of a Clustering Algorithm for Computing Degenerate Primers on Graphics Processing Units.

作者信息

Cickovski Trevor, Flor Tiffany, Irving-Sachs Galen, Novikov Philip, Parda James, Narasimhan Giri

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2015 Mar-Apr;12(2):445-54. doi: 10.1109/TCBB.2014.2355231.

Abstract

In order to make multiple copies of a target sequence in the laboratory, the technique of Polymerase Chain Reaction (PCR) requires the design of "primers", which are short fragments of nucleotides complementary to the flanking regions of the target sequence. If the same primer is to amplify multiple closely related target sequences, then it is necessary to make the primers "degenerate", which would allow it to hybridize to target sequences with a limited amount of variability that may have been caused by mutations. However, the PCR technique can only allow a limited amount of degeneracy, and therefore the design of degenerate primers requires the identification of reasonably well-conserved regions in the input sequences. We take an existing algorithm for designing degenerate primers that is based on clustering and parallelize it in a web-accessible software package GPUDePiCt, using a shared memory model and the computing power of Graphics Processing Units (GPUs). We test our implementation on large sets of aligned sequences from the human genome and show a multi-fold speedup for clustering using our hybrid GPU/CPU implementation over a pure CPU approach for these sequences, which consist of more than 7,500 nucleotides. We also demonstrate that this speedup is consistent over larger numbers and longer lengths of aligned sequences.

摘要

为了在实验室中对目标序列进行多次复制,聚合酶链反应(PCR)技术需要设计“引物”,引物是与目标序列侧翼区域互补的短核苷酸片段。如果要用同一引物扩增多个密切相关的目标序列,那么就需要使引物“简并”,这样它就能与可能由突变导致的具有有限变异性的目标序列杂交。然而,PCR技术只允许有限程度的简并,因此简并引物的设计需要在输入序列中识别出相当保守的区域。我们采用一种基于聚类的现有简并引物设计算法,并将其并行化到一个可通过网络访问的软件包GPUDePiCt中,该软件包使用共享内存模型和图形处理单元(GPU)的计算能力。我们在来自人类基因组的大量比对序列上测试了我们的实现方法,结果表明,对于这些长度超过7500个核苷酸的序列,与纯CPU方法相比,我们的混合GPU/CPU实现方法在聚类方面实现了多倍加速。我们还证明,在比对序列数量更多、长度更长的情况下,这种加速效果是一致的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验