文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于分支内侧结构分割的内侧约束可变形建模:在主动脉瓣分割和形态测量中的应用。

Medially constrained deformable modeling for segmentation of branching medial structures: Application to aortic valve segmentation and morphometry.

作者信息

Pouch Alison M, Tian Sijie, Takebe Manabu, Yuan Jiefu, Gorman Robert, Cheung Albert T, Wang Hongzhi, Jackson Benjamin M, Gorman Joseph H, Gorman Robert C, Yushkevich Paul A

机构信息

Deparment of Surgery, University of Pennsylvania, Philadelphia, PA, United States ; Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, PA, United States .

Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, PA, United States.

出版信息

Med Image Anal. 2015 Dec;26(1):217-31. doi: 10.1016/j.media.2015.09.003. Epub 2015 Sep 28.


DOI:10.1016/j.media.2015.09.003
PMID:26462232
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4679439/
Abstract

Deformable modeling with medial axis representation is a useful means of segmenting and parametrically describing the shape of anatomical structures in medical images. Continuous medial representation (cm-rep) is a "skeleton-first" approach to deformable medial modeling that explicitly parameterizes an object's medial axis and derives the object's boundary algorithmically. Although cm-rep has effectively been used to segment and model a number of anatomical structures with non-branching medial topologies, the framework is challenging to apply to objects with branching medial geometries since branch curves in the medial axis are difficult to parameterize. In this work, we demonstrate the first clinical application of a new "boundary-first" deformable medial modeling paradigm, wherein an object's boundary is explicitly described and constraints are imposed on boundary geometry to preserve the branching configuration of the medial axis during model deformation. This "boundary-first" framework is leveraged to segment and morphologically analyze the aortic valve apparatus in 3D echocardiographic images. Relative to manual tracing, segmentation with deformable medial modeling achieves a mean boundary error of 0.41 ± 0.10 mm (approximately one voxel) in 22 3DE images of normal aortic valves at systole. Deformable medial modeling is additionally demonstrated on pathological cases, including aortic stenosis, Marfan syndrome, and bicuspid aortic valve disease. This study demonstrates a promising approach for quantitative 3DE analysis of aortic valve morphology.

摘要

基于中轴线表示的可变形建模是医学图像中解剖结构形状分割和参数化描述的一种有用方法。连续中轴线表示(cm-rep)是一种用于可变形中轴线建模的“先骨架”方法,它明确地对物体的中轴线进行参数化,并通过算法推导物体的边界。尽管cm-rep已有效地用于分割和建模许多具有非分支中轴线拓扑结构的解剖结构,但由于中轴线中的分支曲线难以参数化,该框架应用于具有分支中轴线几何形状的物体时具有挑战性。在这项工作中,我们展示了一种新的“先边界”可变形中轴线建模范式的首次临床应用,其中明确描述了物体的边界,并对边界几何施加约束,以在模型变形期间保留中轴线的分支配置。利用这种“先边界”框架对三维超声心动图图像中的主动脉瓣装置进行分割和形态分析。相对于手动追踪,在22幅正常主动脉瓣收缩期的三维超声心动图图像中,使用可变形中轴线建模进行分割的平均边界误差为0.41±0.10毫米(约一个体素)。还在包括主动脉狭窄、马凡综合征和二叶式主动脉瓣疾病在内的病理病例中展示了可变形中轴线建模。这项研究展示了一种用于主动脉瓣形态定量三维超声心动图分析的有前景的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索