活化应变模型与分子轨道理论。
The activation strain model and molecular orbital theory.
作者信息
Wolters Lando P, Bickelhaupt F Matthias
机构信息
Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), VU University AmsterdamAmsterdam, The Netherlands; Dipartimento di Scienze Chimiche, Università degli Studi di PadovaPadova, Italy.
Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), VU University AmsterdamAmsterdam, The Netherlands; Institute of Molecules and Materials (IMM), Radboud University NijmegenNijmegen, The Netherlands.
出版信息
Wiley Interdiscip Rev Comput Mol Sci. 2015 Jul;5(4):324-343. doi: 10.1002/wcms.1221. Epub 2015 May 18.
The activation strain model is a powerful tool for understanding reactivity, or inertness, of molecular species. This is done by relating the relative energy of a molecular complex along the reaction energy profile to the structural rigidity of the reactants and the strength of their mutual interactions: Δ() = Δ() + Δ(). We provide a detailed discussion of the model, and elaborate on its strong connection with molecular orbital theory. Using these approaches, a causal relationship is revealed between the properties of the reactants and their reactivity, e.g., reaction barriers and plausible reaction mechanisms. This methodology may reveal intriguing parallels between completely different types of chemical transformations. Thus, the activation strain model constitutes a unifying framework that furthers the development of cross-disciplinary concepts throughout various fields of chemistry. We illustrate the activation strain model in action with selected examples from literature. These examples demonstrate how the methodology is applied to different research questions, how results are interpreted, and how insights into one chemical phenomenon can lead to an improved understanding of another, seemingly completely different chemical process. 2015, 5:324-343. doi: 10.1002/wcms.1221.
活化应变模型是理解分子物种反应活性或惰性的有力工具。这是通过将分子复合物沿反应能量曲线的相对能量与反应物的结构刚性及其相互作用强度联系起来实现的:Δ() = Δ() + Δ()。我们对该模型进行了详细讨论,并阐述了它与分子轨道理论的紧密联系。运用这些方法,揭示了反应物性质与其反应活性之间的因果关系,例如反应势垒和合理的反应机理。这种方法可能揭示完全不同类型化学转化之间有趣的相似之处。因此,活化应变模型构成了一个统一的框架,推动了化学各个领域跨学科概念的发展。我们用文献中的选定例子来说明活化应变模型的实际应用。这些例子展示了该方法如何应用于不同的研究问题、结果如何解释,以及对一种化学现象的洞察如何能增进对另一种看似完全不同的化学过程的理解。2015年,5:324 - 343。doi: 10.1002/wcms.1221。