Jalily Pouria H, Eldstrom Jodene, Miller Scott C, Kwan Daniel C, Tai Sheldon S-H, Chou Doug, Niikura Masahiro, Tietjen Ian, Fedida David
Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver (P.H.J., J.E., S.C.M., D.C.K., D.C., I.T., D.F.), and Faculty of Health Sciences, Simon Fraser University, Burnaby (S.S.-H.T., M.N., I.T.), British Columbia, Canada.
Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver (P.H.J., J.E., S.C.M., D.C.K., D.C., I.T., D.F.), and Faculty of Health Sciences, Simon Fraser University, Burnaby (S.S.-H.T., M.N., I.T.), British Columbia, Canada
Mol Pharmacol. 2016 Aug;90(2):80-95. doi: 10.1124/mol.115.102731. Epub 2016 May 18.
The increasing prevalence of influenza viruses with resistance to approved antivirals highlights the need for new anti-influenza therapeutics. Here we describe the functional properties of hexamethylene amiloride (HMA)-derived compounds that inhibit the wild-type and adamantane-resistant forms of the influenza A M2 ion channel. For example, 6-(azepan-1-yl)-N-carbamimidoylnicotinamide ( 9: ) inhibits amantadine-sensitive M2 currents with 3- to 6-fold greater potency than amantadine or HMA (IC50 = 0.2 vs. 0.6 and 1.3 µM, respectively). Compound 9: competes with amantadine for M2 inhibition, and molecular docking simulations suggest that 9: binds at site(s) that overlap with amantadine binding. In addition, tert-butyl 4'-(carbamimidoylcarbamoyl)-2',3-dinitro-[1,1'-biphenyl]-4-carboxylate ( 27: ) acts both on adamantane-sensitive and a resistant M2 variant encoding a serine to asparagine 31 mutation (S31N) with improved efficacy over amantadine and HMA (IC50 = 0.6 µM and 4.4 µM, respectively). Whereas 9: inhibited in vitro replication of influenza virus encoding wild-type M2 (EC50 = 2.3 µM), both 27: and tert-butyl 4'-(carbamimidoylcarbamoyl)-2',3-dinitro-[1,1'-biphenyl]-4-carboxylate ( 26: ) preferentially inhibited viruses encoding M2(S31N) (respective EC50 = 18.0 and 1.5 µM). This finding indicates that HMA derivatives can be designed to inhibit viruses with resistance to amantadine. Our study highlights the potential of HMA derivatives as inhibitors of drug-resistant influenza M2 ion channels.
对已批准抗病毒药物产生耐药性的流感病毒日益流行,这凸显了开发新型抗流感疗法的必要性。在此,我们描述了六亚甲基阿米洛利(HMA)衍生化合物的功能特性,这些化合物可抑制甲型流感病毒M2离子通道的野生型和金刚烷抗性形式。例如,6-(氮杂环庚烷-1-基)-N-脒基烟酰胺(9:)抑制金刚烷敏感的M2电流的效力比金刚烷或HMA高3至6倍(IC50分别为0.2 μM、0.6 μM和1.3 μM)。化合物9:与金刚烷竞争抑制M2,分子对接模拟表明9:结合于与金刚烷结合重叠的位点。此外,4'-(脒基甲酰基)-2',3-二硝基-[1,1'-联苯]-4-羧酸叔丁酯(27:)对金刚烷敏感的M2变体以及编码丝氨酸31突变为天冬酰胺(S31N)的抗性M2变体均有作用,其疗效优于金刚烷和HMA(IC50分别为0.6 μM和4.4 μM)。虽然9:抑制编码野生型M2的流感病毒的体外复制(EC50 = 2.3 μM),但27:和4'-(脒基甲酰基)-2',3-二硝基-[1,1'-联苯]-4-羧酸叔丁酯(26:)均优先抑制编码M2(S31N)的病毒(各自的EC50 = 18.0 μM和1.5 μM)。这一发现表明,可以设计HMA衍生物来抑制对金刚烷耐药的病毒。我们的研究突出了HMA衍生物作为耐药性流感M2离子通道抑制剂的潜力。