一种关于药物和个人护理产品对虹鳟鱼肝细胞系RTL-W1细胞毒性的计算机模拟方法。

An in silico approach to cytotoxicity of pharmaceuticals and personal care products on the rainbow trout liver cell line RTL-W1.

作者信息

Önlü Serlİ, Saçan Melek Türker

机构信息

Institute of Environmental Sciences, Hisar Campus, Boğaziçi University, Istanbul, Turkey.

出版信息

Environ Toxicol Chem. 2017 May;36(5):1162-1169. doi: 10.1002/etc.3663. Epub 2016 Dec 13.

Abstract

The authors constructed novel, robust, and validated linear Quantitative Structure-Toxicity Relationship (QSTR) models in line with Organisation of Co-operation and Development (OECD) criteria using 2 cytotoxicity data sets which were obtained from the Alamar Blue and 5-carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM) assays. The data sets comprise the cytotoxic effect of structurally diverse and widely used pharmaceuticals, synthetic musks, and industrial chemicals on the rainbow trout (Oncorhynchus mykiss) liver cell line RTL-W1. Common descriptors defined the relationship between structure and cytotoxicity for both the Alamar Blue and the CFDA-AM assays which measure the metabolic activity and membrane integrity, respectively. Only the statistical parameters of the best Alamar Blue-based model were given (n  = 13; R = 0.839; the root-mean-square error of the training set [RMSE ] = 0.261; n  = 5; R = 0.903; RMSE  = 0.181; CCC = 0.939). The proposed QSTR model was able to predict the cytotoxicity of 101 diverse chemicals on the RTL-W1 cell line with 91% structural coverage. The authors found that in vitro-derived cytotoxicity data are promising predictors of in vivo fish toxicity and may provide an initial, rapid screening tool for acute fish toxicity assessment and reduce the need for extensive in vivo toxicity testing. Environ Toxicol Chem 2017;36:1162-1169. © 2016 SETAC.

摘要

作者依据经济合作与发展组织(OECD)标准,使用从阿拉玛蓝和5-羧基荧光素二乙酸酯乙酰氧基甲酯(CFDA-AM)试验获得的2个细胞毒性数据集,构建了新颖、稳健且经过验证的线性定量结构-毒性关系(QSTR)模型。这些数据集包含了结构多样且广泛使用的药物、合成麝香和工业化学品对虹鳟(Oncorhynchus mykiss)肝细胞系RTL-W1的细胞毒性作用。通用描述符分别定义了阿拉玛蓝试验和CFDA-AM试验中结构与细胞毒性之间的关系,这两种试验分别测量代谢活性和膜完整性。仅给出了基于阿拉玛蓝的最佳模型的统计参数(n = 13;R = 0.839;训练集的均方根误差[RMSE] = 0.261;n = 5;R = 0.903;RMSE = 0.181;CCC = 0.939)。所提出的QSTR模型能够预测101种不同化学品对RTL-W1细胞系的细胞毒性,结构覆盖率为91%。作者发现,体外获得的细胞毒性数据有望成为体内鱼类毒性的预测指标,并可为急性鱼类毒性评估提供一种初步、快速的筛选工具,减少广泛的体内毒性测试的需求。《环境毒理学与化学》2017年;36:1162 - 1169。© 2016 SETAC。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索