使用弹性网络正则化回归对阿尔茨海默病静息态功能连接网络损伤进行稳健检测
Robust Detection of Impaired Resting State Functional Connectivity Networks in Alzheimer's Disease Using Elastic Net Regularized Regression.
作者信息
Teipel Stefan J, Grothe Michel J, Metzger Coraline D, Grimmer Timo, Sorg Christian, Ewers Michael, Franzmeier Nicolai, Meisenzahl Eva, Klöppel Stefan, Borchardt Viola, Walter Martin, Dyrba Martin
机构信息
Department of Psychosomatic Medicine, University of RostockRostock, Germany; German Center for Neurodegenerative Diseases, Site Rostock/GreifswaldRostock, Germany.
German Center for Neurodegenerative Diseases, Site Rostock/Greifswald Rostock, Germany.
出版信息
Front Aging Neurosci. 2017 Jan 4;8:318. doi: 10.3389/fnagi.2016.00318. eCollection 2016.
The large number of multicollinear regional features that are provided by resting state (rs) fMRI data requires robust feature selection to uncover consistent networks of functional disconnection in Alzheimer's disease (AD). Here, we compared elastic net regularized and classical stepwise logistic regression in respect to consistency of feature selection and diagnostic accuracy using rs-fMRI data from four centers of the "German resting-state initiative for diagnostic biomarkers" (psymri.org), comprising 53 AD patients and 118 age and sex matched healthy controls. Using all possible pairs of correlations between the time series of rs-fMRI signal from 84 functionally defined brain regions as the initial set of predictor variables, we calculated accuracy of group discrimination and consistency of feature selection with bootstrap cross-validation. Mean areas under the receiver operating characteristic curves as measure of diagnostic accuracy were 0.70 in unregularized and 0.80 in regularized regression. Elastic net regression was insensitive to scanner effects and recovered a consistent network of functional connectivity decline in AD that encompassed parts of the dorsal default mode as well as brain regions involved in attention, executive control, and language processing. Stepwise logistic regression found no consistent network of AD related functional connectivity decline. Regularized regression has high potential to increase diagnostic accuracy and consistency of feature selection from multicollinear functional neuroimaging data in AD. Our findings suggest an extended network of functional alterations in AD, but the diagnostic accuracy of rs-fMRI in this multicenter setting did not reach the benchmark defined for a useful biomarker of AD.
静息态功能磁共振成像(rs-fMRI)数据提供了大量多共线性区域特征,这需要强大的特征选择方法来揭示阿尔茨海默病(AD)中功能断开的一致网络。在此,我们使用来自“德国静息态诊断生物标志物倡议”(psymri.org)四个中心的rs-fMRI数据,比较了弹性网正则化和经典逐步逻辑回归在特征选择一致性和诊断准确性方面的表现,该数据集包含53例AD患者和118例年龄及性别匹配的健康对照。以84个功能定义脑区的rs-fMRI信号时间序列之间的所有可能相关对作为预测变量的初始集,我们通过自助法交叉验证计算了组间区分的准确性和特征选择的一致性。作为诊断准确性度量的受试者操作特征曲线下的平均面积,在非正则化回归中为0.70,在正则化回归中为0.80。弹性网回归对扫描仪效应不敏感,并恢复了AD中功能连接性下降的一致网络,该网络包括部分背侧默认模式以及涉及注意力、执行控制和语言处理的脑区。逐步逻辑回归未发现与AD相关的功能连接性下降的一致网络。正则化回归在提高AD中多共线性功能神经影像数据的诊断准确性和特征选择一致性方面具有很大潜力。我们的研究结果表明AD中存在功能改变的扩展网络,但在这种多中心环境下rs-fMRI的诊断准确性未达到为AD有用生物标志物定义的基准。