多功能纤维素酶比连续真菌纤维素酶更适合于纳米纤维素和生物燃料的共生产。

Multifunctional Cellulolytic Enzymes Outperform Processive Fungal Cellulases for Coproduction of Nanocellulose and Biofuels.

机构信息

Biosciences Center, National Renewable Energy Lab , 1503 Denver W. Parkway, Golden, Colorado 80401, United States.

出版信息

ACS Nano. 2017 Mar 28;11(3):3101-3109. doi: 10.1021/acsnano.7b00086. Epub 2017 Mar 10.

Abstract

Producing fuels, chemicals, and materials from renewable resources to meet societal demands remains an important step in the transition to a sustainable, clean energy economy. The use of cellulolytic enzymes for the production of nanocellulose enables the coproduction of sugars for biofuels production in a format that is largely compatible with the process design employed by modern lignocellulosic (second generation) biorefineries. However, yields of enzymatically produced nanocellulose are typically much lower than those achieved by mineral acid production methods. In this study, we compare the capacity for coproduction of nanocellulose and fermentable sugars using two vastly different cellulase systems: the classical "free enzyme" system of the saprophytic fungus, Trichoderma reesei (T. reesei) and the complexed, multifunctional enzymes produced by the hot springs resident, Caldicellulosiruptor bescii (C. bescii). We demonstrate by comparative digestions that the C. bescii system outperforms the fungal enzyme system in terms of total cellulose conversion, sugar production, and nanocellulose production. In addition, we show by multimodal imaging and dynamic light scattering that the nanocellulose produced by the C. bescii cellulase system is substantially more uniform than that produced by the T. reesei system. These disparities in the yields and characteristics of the nanocellulose produced by these disparate systems can be attributed to the dramatic differences in the mechanisms of action of the dominant enzymes in each system.

摘要

从可再生资源中生产燃料、化学品和材料,以满足社会需求,是向可持续清洁能源经济转型的重要一步。利用纤维素酶生产纳米纤维素,可以在与现代木质纤维素(第二代)生物精炼厂所采用的工艺设计基本兼容的形式下,共生产用于生物燃料生产的糖。然而,酶法生产纳米纤维素的产率通常远低于矿物酸生产方法。在这项研究中,我们使用两种截然不同的纤维素酶系统比较了共生产纳米纤维素和可发酵糖的能力:腐生真菌里氏木霉(Trichoderma reesei)的经典“游离酶”系统和热泉栖居的产甲烷菌(Caldicellulosiruptor bescii)产生的复杂多功能酶。通过比较消化,我们证明 C. bescii 系统在总纤维素转化率、糖产量和纳米纤维素产量方面优于真菌酶系统。此外,我们通过多模态成像和动态光散射表明,C. bescii 纤维素酶系统生产的纳米纤维素比 T. reesei 系统生产的纳米纤维素更均匀。这些差异归因于每个系统中主要酶的作用机制存在显著差异,导致这些不同系统生产的纳米纤维素的产率和特性存在差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索