Beel Sander, Moisse Matthieu, Damme Markus, De Muynck Louis, Robberecht Wim, Van Den Bosch Ludo, Saftig Paul, Van Damme Philip
Department of Neurosciences, Experimental Neurology and Leuven Institute for Neuroscience and Disease (LIND), KU Leuven - University of Leuven, B-3000 Leuven, Belgium.
VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, B-3000 Leuven, Belgium.
Hum Mol Genet. 2017 Aug 1;26(15):2850-2863. doi: 10.1093/hmg/ddx162.
Loss of function mutations in progranulin (GRN) cause frontotemporal dementia, but how GRN haploinsufficiency causes neuronal dysfunction remains unclear. We previously showed that GRN is neurotrophic in vitro. Here, we used an in vivo axonal outgrowth system and observed a delayed recovery in GRN-/- mice after facial nerve injury. This deficit was rescued by reintroduction of human GRN and relied on its C-terminus and on neuronal GRN production. Transcriptome analysis of the facial motor nucleus post injury identified cathepsin D (CTSD) as the most upregulated gene. In aged GRN-/- cortices, CTSD was also upregulated, but the relative CTSD activity was reduced and improved upon exogenous GRN addition. Moreover, GRN and its C-terminal granulin domain granulinE (GrnE) both stimulated the proteolytic activity of CTSD in vitro. Pull-down experiments confirmed a direct interaction between GRN and CTSD. This interaction was also observed with GrnE and stabilized the CTSD enzyme at different temperatures. Investigating the importance of this interaction for axonal regeneration in vivo we found that, although individually tolerated, a combined reduction of GRN and CTSD synergistically reduced axonal outgrowth. Our data links the neurotrophic effect of GRN and GrnE with a lysosomal chaperone function on CTSD to maintain its proteolytic capacity.
前颗粒蛋白(GRN)功能丧失突变会导致额颞叶痴呆,但GRN单倍剂量不足如何导致神经元功能障碍仍不清楚。我们之前表明GRN在体外具有神经营养作用。在此,我们使用体内轴突生长系统,观察到面神经损伤后GRN基因敲除小鼠的恢复延迟。通过重新引入人GRN可挽救这一缺陷,且该挽救依赖于其C末端和神经元GRN的产生。损伤后面部运动核的转录组分析确定组织蛋白酶D(CTSD)是上调最显著的基因。在老年GRN基因敲除小鼠的皮质中,CTSD也上调,但相对CTSD活性降低,添加外源性GRN后有所改善。此外,GRN及其C末端颗粒蛋白结构域颗粒蛋白E(GrnE)在体外均能刺激CTSD的蛋白水解活性。下拉实验证实GRN与CTSD之间存在直接相互作用。在GrnE中也观察到这种相互作用,并且在不同温度下稳定了CTSD酶。研究这种相互作用对体内轴突再生的重要性,我们发现,尽管单独降低GRN和CTSD是可以耐受的,但两者共同降低会协同减少轴突生长。我们的数据将GRN和GrnE的神经营养作用与CTSD的溶酶体伴侣功能联系起来,以维持其蛋白水解能力。