基于静息态 fMRI 和三重网络模型的高敏神经影像学生物标志物对遗忘型轻度认知障碍的识别。
High-sensitivity neuroimaging biomarkers for the identification of amnestic mild cognitive impairment based on resting-state fMRI and a triple network model.
机构信息
Department of Psychiatry, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China.
Center for Cognition and Brain Disorders, Hangzhou Normal University, Zhejiang, Hangzhou, 311121, China.
出版信息
Brain Imaging Behav. 2019 Feb;13(1):1-14. doi: 10.1007/s11682-017-9727-6.
Many functional magnetic resonance imaging (fMRI) studies have indicated that Granger causality analysis (GCA) is a suitable method for revealing causal effects between brain regions. The purpose of the present study was to identify neuroimaging biomarkers with a high sensitivity to amnestic mild cognitive impairment (aMCI). The resting-state fMRI data of 30 patients with Alzheimer's disease (AD), 14 patients with aMCI, and 18 healthy controls (HC) were evaluated using GCA. This study focused on the "triple networks" concept, a recently proposed higher-order functioning-related brain network model that includes the default-mode network (DMN), salience network (SN), and executive control network (ECN). As expected, GCA techniques were able to reveal differences in connectivity in the three core networks among the three patient groups. The fMRI data were pre-processed using DPARSFA v2.3 and REST v1.8. Voxel-wise GCA was performed using the REST-GCA in the REST toolbox. The directed (excitatory and inhibitory) connectivity obtained from GCA could differentiate among the AD, aMCI and HC groups. This result suggests that analysing the directed connectivity of inter-hemisphere connections represents a sensitive method for revealing connectivity changes observed in patients with aMCI. Specifically, inhibitory within-DMN connectivity from the posterior cingulate cortex (PCC) to the hippocampal formation and from the thalamus to the PCC as well as excitatory within-SN connectivity from the dorsal anterior cingulate cortex (dACC) to the striatum, from the ECN to the DMN, and from the SN to the ECN demonstrated that changes in connectivity likely reflect compensatory effects in aMCI. These findings suggest that changes observed in the triple networks may be used as sensitive neuroimaging biomarkers for the early detection of aMCI.
许多功能磁共振成像(fMRI)研究表明,格兰杰因果分析(GCA)是一种揭示大脑区域之间因果效应的合适方法。本研究旨在确定具有高灵敏度的神经影像学生物标志物,用于诊断轻度认知障碍伴遗忘型(aMCI)。使用 GCA 对 30 例阿尔茨海默病(AD)患者、14 例 aMCI 患者和 18 例健康对照者(HC)的静息态 fMRI 数据进行了评估。本研究聚焦于“三重网络”概念,这是一种新提出的与高级功能相关的脑网络模型,包括默认模式网络(DMN)、突显网络(SN)和执行控制网络(ECN)。正如预期的那样,GCA 技术能够揭示三组患者三个核心网络之间的连接差异。fMRI 数据使用 DPARSFA v2.3 和 REST v1.8 进行预处理。使用 REST 工具包中的 REST-GCA 进行体素水平 GCA。从 GCA 获得的有向(兴奋和抑制)连接可以区分 AD、aMCI 和 HC 组。这一结果表明,分析半球间连接的有向连接是一种揭示 aMCI 患者观察到的连接变化的敏感方法。具体来说,从后扣带回皮质(PCC)到海马体以及从丘脑到 PCC 的 DMN 内抑制性连接,从背侧前扣带回皮质(dACC)到纹状体、从 ECN 到 DMN 和从 SN 到 ECN 的 SN 内兴奋性连接表明,连接变化可能反映了 aMCI 中的代偿效应。这些发现表明,三重网络中观察到的变化可以作为早期发现 aMCI 的敏感神经影像学生物标志物。