应用机器学习算法对基于 ICA 的特征进行自动 EEG 伪影消除。

Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features.

机构信息

Federal Institute for Occupational Safety and Health, Mental Health and Cognitive Capacity, Nöldnerstr. 40-42, 10317 Berlin, Germany.

出版信息

J Neural Eng. 2017 Aug;14(4):046004. doi: 10.1088/1741-2552/aa69d1.

Abstract

OBJECTIVE

Biological and non-biological artifacts cause severe problems when dealing with electroencephalogram (EEG) recordings. Independent component analysis (ICA) is a widely used method for eliminating various artifacts from recordings. However, evaluating and classifying the calculated independent components (IC) as artifact or EEG is not fully automated at present.

APPROACH

In this study, we propose a new approach for automated artifact elimination, which applies machine learning algorithms to ICA-based features.

MAIN RESULTS

We compared the performance of our classifiers with the visual classification results given by experts. The best result with an accuracy rate of 95% was achieved using features obtained by range filtering of the topoplots and IC power spectra combined with an artificial neural network.

SIGNIFICANCE

Compared with the existing automated solutions, our proposed method is not limited to specific types of artifacts, electrode configurations, or number of EEG channels. The main advantages of the proposed method is that it provides an automatic, reliable, real-time capable, and practical tool, which avoids the need for the time-consuming manual selection of ICs during artifact removal.

摘要

目的

在处理脑电图(EEG)记录时,生物和非生物伪迹会造成严重的问题。独立成分分析(ICA)是一种广泛用于消除记录中各种伪迹的方法。然而,目前还不能完全实现对计算出的独立成分(IC)进行自动评估和分类,以确定其是伪迹还是 EEG。

方法

在这项研究中,我们提出了一种新的自动消除伪迹的方法,该方法将机器学习算法应用于基于 ICA 的特征。

主要结果

我们将分类器的性能与专家给出的视觉分类结果进行了比较。使用基于顶图范围滤波和 IC 功率谱的特征,并结合人工神经网络,获得了最佳的准确率为 95%的结果。

意义

与现有的自动解决方案相比,我们提出的方法不受特定类型的伪迹、电极配置或 EEG 通道数量的限制。该方法的主要优点是提供了一种自动、可靠、实时和实用的工具,避免了在去除伪迹时需要耗时的手动选择 IC。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索