Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
Protein Science Laboratory of the Ministry of Education, Tsinghua University, Beijing, 100084, China.
Sci Rep. 2017 Jul 20;7(1):6021. doi: 10.1038/s41598-017-06375-w.
Biomineralization, including shell formation, is dedicatedly regulated by matrix proteins. PfY2, a matrix protein detected in the ethylene diamine tetraacetic acid (EDTA)-soluble fraction from both prismatic layer and nacreous layer, was discovered by our group using microarray. It may play dual roles during biomineralization. However, the molecular mechanism is still unclear. In this research, we studied the function of PfY2 on crystallization in vivo and in vitro, revealing that it might be a negative regulator during shell formation. Notching experiment indicated that PfY2 was involved in shell repairing and regenerating process. Repression of PfY2 gene affected the structure of prismatic and nacreous layer simultaneously, confirming its dual roles in shell formation. Recombinant protein rPfY2 significantly suppressed CaCO precipitation rate, participated in the crystal nucleation process, changed the morphology of crystals and inhibited the transformation of amorphous calcium carbonate (ACC) to stable calcite or aragonite in vitro. Our results may provide new evidence on the biomineralization inhibition process.
生物矿化,包括贝壳形成,是由基质蛋白专门调控的。我们的研究小组使用微阵列发现了 PfY2,它是一种在来自棱柱层和珍珠层的乙二胺四乙酸(EDTA)可溶部分中检测到的基质蛋白。它在生物矿化过程中可能发挥双重作用,但分子机制尚不清楚。在本研究中,我们研究了 PfY2 在体内和体外结晶过程中的功能,揭示它可能是贝壳形成过程中的负调控因子。缺口实验表明 PfY2 参与了贝壳修复和再生过程。PfY2 基因的抑制作用同时影响了棱柱层和珍珠层的结构,证实了它在贝壳形成中的双重作用。重组蛋白 rPfY2 显著抑制了 CaCO3 的沉淀速率,参与了晶体成核过程,改变了晶体的形态,并抑制了无定形碳酸钙(ACC)在体外向稳定的方解石或文石的转化。我们的结果可能为生物矿化抑制过程提供新的证据。