通过超疏水、3D 打印装置中的重力控制和同步驱动微滴。

Controlled, synchronized actuation of microdroplets by gravity in a superhydrophobic, 3D-printed device.

机构信息

Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1-XB20, 9713 AV Groningen, The Netherlands.

Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada.

出版信息

Anal Chim Acta. 2017 Oct 2;988:50-57. doi: 10.1016/j.aca.2017.08.010. Epub 2017 Aug 14.

Abstract

Droplet manipulation over open surfaces allows one to perform assays with a large degree of control and high throughput, making them appealing for applications in drug screening or (bio)analysis. However, the design, manufacturing and operation of these systems comes with high technical requirements. In this study we employ a commercial, low-friction, superhydrophobic coating, Ultra-Ever Dry, on a 3D-printed microfluidic device. The device features individual droplet compartments, which allow the manipulation of discrete droplets (10-50 μL) actuated by gravity alone. Simply by angling the device to normal in a 3D-printed holder and rocking in a "to and fro"-fashion, a sequence of droplets can be individually transferred to an electrochemical microelectrode detector and then to waste, while preserving the (chronological) order of samples. Multiple biological fluids (i.e. human saliva, urine and rat blood and serum) were successfully tested for compatibility with the device and actuation mechanism, demonstrating low slip angles and high contact angles. Biological matrix (protein) carryover was probed and effectively mitigated by incorporating aqueous rinse droplets as part of the analysis sequence. As a proof-of-concept, the enzyme-coupled, amperometric detection of glucose was carried out on individual rat serum droplets, enabling total analysis in ≈30 min, including calibration. The device is readily customizable, and the integration of droplet generation techniques and other sensor systems for different analytes of interest or applications can be realized in a plug and play fashion.

摘要

在开放表面上操控液滴可以实现高度控制和高通量的分析,因此在药物筛选或(生物)分析等应用中具有吸引力。然而,这些系统的设计、制造和操作需要很高的技术要求。在本研究中,我们在 3D 打印微流控设备上使用了一种商业的、低摩擦的超疏水涂层 Ultra-Ever Dry。该设备具有单独的液滴隔室,允许通过重力单独操纵离散的液滴(10-50 μL)。只需将设备在 3D 打印支架中倾斜至正常位置,并以“来回”的方式晃动,就可以将一系列液滴逐个转移到电化学微电极检测器中,然后转移到废物中,同时保留样品的(时间顺序)顺序。多种生物流体(即人唾液、尿液和大鼠血液和血清)成功地与设备和致动机制进行了兼容性测试,证明了低滑动角和高接触角。通过在分析序列中包含水性冲洗液滴来探测和有效减轻生物基质(蛋白质)的携带。作为概念验证,对单个大鼠血清液滴进行了酶偶联的安培检测葡萄糖,在 ≈30 分钟内完成了总分析,包括校准。该设备易于定制,并且可以通过插件和播放的方式集成液滴生成技术和其他感兴趣的分析物或应用的传感器系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索