基于化学位移编码 MRI 估计质子密度脂肪分数的噪声特性。

Noise properties of proton density fat fraction estimated using chemical shift-encoded MRI.

机构信息

Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.

出版信息

Magn Reson Med. 2018 Aug;80(2):685-695. doi: 10.1002/mrm.27065. Epub 2018 Jan 10.

Abstract

PURPOSE

The purpose of this work is to characterize the noise distribution of proton density fat fraction (PDFF) measured using chemical shift-encoded MRI, and to provide alternative strategies to reduce bias in PDFF estimation.

THEORY

We derived the probability density function for PDFF estimated using chemical shift-encoded MRI, and found it to exhibit an asymmetric noise distribution that contributes to signal-to-noise-ratio dependent bias.

METHODS

To study PDFF noise bias, we performed (at 1.5 T) numerical simulations, phantom acquisitions, and a retrospective in vivo experiment. In each experiment, we compared the performance of three statistics (mean, median, and maximum likelihood estimator) in estimating the PDFF in a region of interest.

RESULTS

We demonstrated the presence of the asymmetric noise distribution in simulations, phantoms, and in vivo. In each experiment we demonstrated that both the median and proposed maximum likelihood estimator statistics outperformed the mean statistic in mitigating noise-related bias for low signal-to-noise-ratio acquisitions.

CONCLUSIONS

Characterization of the noise distribution of PDFF estimated using chemical shift-encoded MRI enabled new strategies based on median and maximum likelihood estimator statistics to mitigate noise-related bias for accurate PDFF measurement from a region of interest. Such strategies are important for quantitative chemical shift-encoded MRI applications that typically operate in low signal-to-noise-ratio regimes. Magn Reson Med 80:685-695, 2018. © 2018 International Society for Magnetic Resonance in Medicine.

摘要

目的

本研究旨在描述基于化学位移编码 MRI 测量质子密度脂肪分数(PDFF)的噪声分布,并提供减少 PDFF 估计偏差的替代策略。

理论

我们推导出了基于化学位移编码 MRI 测量的 PDFF 的概率密度函数,并发现其表现出一种不对称的噪声分布,导致信号噪声比依赖性偏差。

方法

为了研究 PDFF 噪声偏差,我们进行了(在 1.5T 下)数值模拟、体模采集和回顾性体内实验。在每个实验中,我们比较了三种统计量(均值、中位数和最大似然估计量)在估计感兴趣区域 PDFF 中的性能。

结果

我们在模拟、体模和体内实验中证明了不对称噪声分布的存在。在每个实验中,我们都证明了中位数和提出的最大似然估计量统计量在减轻低信噪比采集时的噪声相关偏差方面优于均值统计量。

结论

对基于化学位移编码 MRI 测量的 PDFF 的噪声分布进行特征描述,使我们能够基于中位数和最大似然估计量统计量来制定新策略,以减轻噪声相关偏差,从而从感兴趣区域进行准确的 PDFF 测量。这些策略对于通常在低信号噪声比环境下运行的定量化学位移编码 MRI 应用非常重要。磁共振医学 80:685-695, 2018。© 2018 国际磁共振学会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索