Lam Carson, Yi Darvin, Guo Margaret, Lindsey Tony
Biomedical Informatics Department, Stanford University, Palo Alto, CA.
School of Medicine, Stanford University, Palo Alto, CA.
AMIA Jt Summits Transl Sci Proc. 2018 May 18;2017:147-155. eCollection 2018.
Diabetic retinopathy is a leading cause of blindness among working-age adults. Early detection of this condition is critical for good prognosis. In this paper, we demonstrate the use of convolutional neural networks (CNNs) on color fundus images for the recognition task of diabetic retinopathy staging. Our network models achieved test metric performance comparable to baseline literature results, with validation sensitivity of 95%. We additionally explored multinomial classification models, and demonstrate that errors primarily occur in the misclassification of mild disease as normal due to the CNNs inability to detect subtle disease features. We discovered that preprocessing with contrast limited adaptive histogram equalization and ensuring dataset fidelity by expert verification of class labels improves recognition of subtle features. Transfer learning on pretrained GoogLeNet and AlexNet models from ImageNet improved peak test set accuracies to 74.5%, 68.8%, and 57.2% on 2-ary, 3-ary, and 4-ary classification models, respectively.
糖尿病性视网膜病变是工作年龄成年人失明的主要原因。早期发现这种疾病对于良好的预后至关重要。在本文中,我们展示了卷积神经网络(CNN)在彩色眼底图像上用于糖尿病性视网膜病变分期识别任务的应用。我们的网络模型实现了与基线文献结果相当的测试指标性能,验证灵敏度为95%。我们还探索了多项式分类模型,并证明错误主要发生在将轻度疾病误分类为正常,这是由于CNN无法检测到细微的疾病特征。我们发现,使用对比度受限自适应直方图均衡化进行预处理,并通过专家对类别标签的验证来确保数据集的保真度,可以提高对细微特征的识别。从ImageNet对预训练的GoogLeNet和AlexNet模型进行迁移学习,分别在二元、三元和四元分类模型上使测试集峰值准确率提高到74.5%、68.8%和57.2%。