一种完全保护的氢化酶/聚合物基生物阳极,用于高性能氢/葡萄糖生物燃料电池。
A fully protected hydrogenase/polymer-based bioanode for high-performance hydrogen/glucose biofuel cells.
机构信息
Analytical Chemistry - Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstr. 150, Bochum, D-44780, Germany.
Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal.
出版信息
Nat Commun. 2018 Sep 10;9(1):3675. doi: 10.1038/s41467-018-06106-3.
Hydrogenases with Ni- and/or Fe-based active sites are highly active hydrogen oxidation catalysts with activities similar to those of noble metal catalysts. However, the activity is connected to a sensitivity towards high-potential deactivation and oxygen damage. Here we report a fully protected polymer multilayer/hydrogenase-based bioanode in which the sensitive hydrogen oxidation catalyst is protected from high-potential deactivation and from oxygen damage by using a polymer multilayer architecture. The active catalyst is embedded in a low-potential polymer (protection from high-potential deactivation) and covered with a polymer-supported bienzymatic oxygen removal system. In contrast to previously reported polymer-based protection systems, the proposed strategy fully decouples the hydrogenase reaction form the protection process. Incorporation of the bioanode into a hydrogen/glucose biofuel cell provides a benchmark open circuit voltage of 1.15 V and power densities of up to 530 µW cm at 0.85 V.
具有 Ni 和/或 Fe 基活性位点的氢化酶是具有高活性的氢气氧化催化剂,其活性与贵金属催化剂相似。然而,其活性与对高电位失活和氧气损伤的敏感性有关。在这里,我们报告了一种完全受保护的聚合物多层/氢化酶基生物阳极,其中使用聚合物多层结构来保护敏感的氢气氧化催化剂免受高电位失活和氧气损伤。活性催化剂被嵌入在低电位聚合物中(防止高电位失活),并覆盖有聚合物支持的双酶氧去除系统。与以前报道的基于聚合物的保护系统相比,所提出的策略完全将氢化酶反应与保护过程解耦。将生物阳极纳入氢/葡萄糖生物燃料电池中,在 0.85 V 时提供基准开路电压为 1.15 V 和高达 530 µW·cm 的功率密度。