一种计算建模方法预测了来自 真菌的抗真菌蛋白 AFP 通过其 γ-核心基序与真菌膜的相互作用。
A Computational Modeling Approach Predicts Interaction of the Antifungal Protein AFP from with Fungal Membranes via Its γ-Core Motif.
机构信息
Institut für Chemie, Technische Universität Berlin, Berlin, Germany.
Institute of Biotechnology, Department Applied and Molecular Microbiology, Technische Universität Berlin, Berlin, Germany.
出版信息
mSphere. 2018 Oct 3;3(5):e00377-18. doi: 10.1128/mSphere.00377-18.
Fungal pathogens kill more people per year globally than malaria or tuberculosis and threaten international food security through crop destruction. New sophisticated strategies to inhibit fungal growth are thus urgently needed. Among the potential candidate molecules that strongly inhibit fungal spore germination are small cationic, cysteine-stabilized proteins of the AFP family secreted by a group of filamentous Ascomycetes. Its founding member, AFP from , is of particular interest since it selectively inhibits the growth of filamentous fungi without affecting the viability of mammalian, plant, or bacterial cells. AFPs are also characterized by their high efficacy and stability. Thus, AFP can serve as a lead compound for the development of novel antifungals. Notably, all members of the AFP family comprise a γ-core motif which is conserved in all antimicrobial proteins from pro- and eukaryotes and known to interfere with the integrity of cytoplasmic plasma membranes. In this study, we used classical molecular dynamics simulations combined with wet laboratory experiments and nuclear magnetic resonance (NMR) spectroscopy to characterize the structure and dynamical behavior of AFP isomers in solution and their interaction with fungal model membranes. We demonstrate that the γ-core motif of structurally conserved AFP is the key for its membrane interaction, thus verifying for the first time that the conserved γ-core motif of antimicrobial proteins is directly involved in protein-membrane interactions. Furthermore, molecular dynamic simulations suggested that AFP does not destroy the fungal membrane by pore formation but covers its surface in a well-defined manner, using a multistep mechanism to destroy the membranes integrity. Fungal pathogens pose a serious danger to human welfare since they kill more people per year than malaria or tuberculosis and are responsible for crop losses worldwide. The treatment of fungal infections is becoming more complicated as fungi develop resistances against commonly used fungicides. Therefore, discovery and development of novel antifungal agents are of utmost importance.
真菌病原体每年在全球造成的死亡人数超过疟疾或结核病,通过破坏作物对国际粮食安全构成威胁。因此,迫切需要新的复杂策略来抑制真菌生长。在强烈抑制真菌孢子萌发的潜在候选分子中,有一种是由一组丝状子囊菌分泌的、具有小阳离子、半胱氨酸稳定的 AFP 家族的蛋白质。其创始成员来自 的 AFP 特别引人注目,因为它选择性地抑制丝状真菌的生长,而不影响哺乳动物、植物或细菌细胞的活力。AFPs 的特点还在于其高效性和稳定性。因此,AFP 可以作为开发新型抗真菌药物的先导化合物。值得注意的是,AFP 家族的所有成员都包含一个 γ-核心基序,该基序在原核生物和真核生物的所有抗菌蛋白中都保守,已知会干扰细胞质质膜的完整性。在这项研究中,我们使用经典的分子动力学模拟结合实验室实验和核磁共振(NMR)光谱学来表征 AFP 异构体在溶液中的结构和动态行为及其与真菌模型膜的相互作用。我们证明,结构保守的 AFP 的 γ-核心基序是其膜相互作用的关键,从而首次验证了抗菌蛋白的保守 γ-核心基序直接参与了蛋白质-膜相互作用。此外,分子动力学模拟表明,AFP 不是通过形成孔来破坏真菌膜,而是以一种定义明确的方式覆盖其表面,使用多步机制破坏膜的完整性。真菌病原体对人类福利构成严重威胁,因为它们每年造成的死亡人数超过疟疾或结核病,并且是全球作物损失的罪魁祸首。由于真菌对抗真菌剂产生了耐药性,真菌感染的治疗变得更加复杂。因此,发现和开发新型抗真菌药物至关重要。