动态分子间相互作用控制着天然有机物和蛋白质混合物在二氧化钛纳米粒子上的吸附。
Dynamic Intermolecular Interactions Control Adsorption from Mixtures of Natural Organic Matter and Protein onto Titanium Dioxide Nanoparticles.
机构信息
Department of Civil and Environmental Engineering , University of Houston , Houston , Texas 77204 , United States.
出版信息
Environ Sci Technol. 2018 Dec 18;52(24):14158-14168. doi: 10.1021/acs.est.8b04014. Epub 2018 Dec 10.
Engineered nanoparticles (NPs) will obtain macromolecular coatings in environmental systems, changing their subsequent interactions. The matrix complexity inherent in natural waters and wastewaters greatly complicates prediction of the corona formation. Here, we investigate corona formation on titanium dioxide (TiO) NPs from mixtures of natural organic matter (NOM) and a protein, bovine serum albumin (BSA), to thoroughly probe the role of mixture interactions in the adsorption process. Fundamentally different coronas were observed under different NP exposure conditions and time scales. In mixtures of NOM and protein, the corona composition was kinetically determined, and the species initially coadsorbed but were ultimately limited to monolayers. On the contrary, sequential exposure of the NPs to pure solutions of NOM and protein resulted in extensive multilayer formation. The intermolecular complexation between NOM and BSA in solution and at the NP surface was the key mechanism controlling these distinctive adsorption behaviors, as determined by size exclusion chromatography (SEC) and in situ attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Overall, this study demonstrates that dynamic intermolecular interactions and the history of the NP surface must be considered together to predict corona formation on NPs in complex environmental media.
在环境系统中,工程纳米颗粒(NPs)将获得高分子涂层,从而改变它们随后的相互作用。天然水和废水中固有的基质复杂性极大地增加了预测冠层形成的难度。在这里,我们研究了从天然有机物(NOM)和蛋白质(牛血清白蛋白,BSA)混合物中形成的二氧化钛(TiO)NPs 的冠层形成,以深入探究混合物相互作用在吸附过程中的作用。在不同的 NP 暴露条件和时间尺度下观察到了根本不同的冠层。在 NOM 和蛋白质的混合物中,冠层组成是由动力学决定的,最初共同吸附的物质最终被限制在单层。相反,将 NPs 顺序暴露于纯 NOM 和蛋白质溶液中会导致广泛的多层形成。溶液中和 NP 表面上 NOM 和 BSA 之间的分子间络合是控制这些独特吸附行为的关键机制,这可以通过尺寸排阻色谱(SEC)和原位衰减全反射傅里叶变换红外(ATR-FTIR)光谱来确定。总的来说,这项研究表明,必须综合考虑动态分子间相互作用和 NP 表面的历史,以预测复杂环境介质中 NPs 上的冠层形成。