减少的突触前囊泡储存介导了阿尔茨海默病早期小鼠模型中的细胞和网络可塑性缺陷。

Reduced presynaptic vesicle stores mediate cellular and network plasticity defects in an early-stage mouse model of Alzheimer's disease.

机构信息

Department of Neuroscience, The Chicago Medical School; The Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA.

Department of Cell Biology and Anatomy, The Chicago Medical School; Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA.

出版信息

Mol Neurodegener. 2019 Jan 22;14(1):7. doi: 10.1186/s13024-019-0307-7.

Abstract

BACKGROUND

Identifying effective strategies to prevent memory loss in AD has eluded researchers to date, and likely reflects insufficient understanding of early pathogenic mechanisms directly affecting memory encoding. As synaptic loss best correlates with memory loss in AD, refocusing efforts to identify factors driving synaptic impairments may provide the critical insight needed to advance the field. In this study, we reveal a previously undescribed cascade of events underlying pre and postsynaptic hippocampal signaling deficits linked to cognitive decline in AD. These profound alterations in synaptic plasticity, intracellular Ca signaling, and network propagation are observed in 3-4 month old 3xTg-AD mice, an age which does not yet show overt histopathology or major behavioral deficits.

METHODS

In this study, we examined hippocampal synaptic structure and function from the ultrastructural level to the network level using a range of techniques including electron microscopy (EM), patch clamp and field potential electrophysiology, synaptic immunolabeling, spine morphology analyses, 2-photon Ca imaging, and voltage-sensitive dye-based imaging of hippocampal network function in 3-4 month old 3xTg-AD and age/background strain control mice.

RESULTS

In 3xTg-AD mice, short-term plasticity at the CA1-CA3 Schaffer collateral synapse is profoundly impaired; this has broader implications for setting long-term plasticity thresholds. Alterations in spontaneous vesicle release and paired-pulse facilitation implicated presynaptic signaling abnormalities, and EM analysis revealed a reduction in the ready-releasable and reserve pools of presynaptic vesicles in CA3 terminals; this is an entirely new finding in the field. Concurrently, increased synaptically-evoked Ca in CA1 spines triggered by LTP-inducing tetani is further enhanced during PTP and E-LTP epochs, and is accompanied by impaired synaptic structure and spine morphology. Notably, vesicle stores, synaptic structure and short-term plasticity are restored by normalizing intracellular Ca signaling in the AD mice.

CONCLUSIONS

These findings suggest the Ca dyshomeostasis within synaptic compartments has an early and fundamental role in driving synaptic pathophysiology in early stages of AD, and may thus reflect a foundational disease feature driving later cognitive impairment. The overall significance is the identification of previously unidentified defects in pre and postsynaptic compartments affecting synaptic vesicle stores, synaptic plasticity, and network propagation, which directly impact memory encoding.

摘要

背景

迄今为止,研究人员尚未找到预防 AD 患者记忆丧失的有效策略,这可能反映出对直接影响记忆编码的早期致病机制的了解不足。由于突触丧失与 AD 患者的记忆丧失最相关,因此重新关注识别导致突触损伤的因素可能为该领域提供急需的重要见解。在这项研究中,我们揭示了 AD 患者认知能力下降与海马体突触信号缺陷相关的以前未描述的级联事件。在 3-4 月龄的 3xTg-AD 小鼠中观察到突触可塑性、细胞内 Ca 信号和网络传播的这些深刻改变,而该年龄尚未出现明显的组织病理学或主要行为缺陷。

方法

在这项研究中,我们使用一系列技术,包括电子显微镜(EM)、膜片钳和场电位电生理学、突触免疫标记、棘突形态分析、双光子 Ca 成像以及电压敏感染料的海马网络功能成像,从超微结构水平到网络水平检查了 3-4 月龄的 3xTg-AD 和年龄/背景品系对照小鼠的海马突触结构和功能。

结果

在 3xTg-AD 小鼠中,CA1-CA3 沙尔夫侧枝突触的短期可塑性严重受损;这对设定长期可塑性阈值具有更广泛的意义。自发囊泡释放和成对脉冲易化的改变暗示了突触前信号异常,而 EM 分析显示 CA3 末梢的易释放和储备池的突触前囊泡减少;这是该领域的全新发现。同时,由 LTP 诱导的强直刺激引发的 CA1 棘突中的突触诱发 Ca 进一步增强在 PTP 和 E-LTP 期间增强,并且伴随着突触结构和棘突形态的损伤。值得注意的是,通过使 AD 小鼠中的细胞内 Ca 信号正常化,可以恢复囊泡储存、突触结构和短期可塑性。

结论

这些发现表明,突触区室中的 Ca 稳态失衡在 AD 早期阶段驱动突触病理生理学中具有早期和基本作用,因此可能反映出驱动后期认知障碍的基础疾病特征。总体意义是鉴定了影响突触小泡储存、突触可塑性和网络传播的突触前和突触后区室的以前未识别的缺陷,这些缺陷直接影响记忆编码。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07e1/6343260/25fa4fc3a2f0/13024_2019_307_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索